- маркировка: цветовая или графическая индикация для быстрого поиска;
- виброустойчивость: фиксация быстросъемного лючка должна исключать самопроизвольное открытие;
 - герметичность: защита от пыли, влаги и перепадов давления;
- технологичность: возможность изготовления на 3D-принтере или фрезеровке, минимум постобработки, встроенные направляющие и ограничители входа.

Таким образом, быстросъемный лючок — это правильность выбора фиксации, материалов и геометрии, позволяющие объединить технологичность изготовления с практичностью, а достижение виброустойчивости — сохранить целостность и функциональность в самых жестких условиях. Разработка таких решений — это шаг к более адаптивным, ремонтопригодным и профессиональным реалиям.

УДК 681.5.08

ЛИНЕЙКА ОПТИЧЕСКИХ ЦЕЛЕВЫХ НАГРУЗОК РАЗРАБОТАННЫХ И СЕРИЙНО ВЫПУСКАЕМЫХ В РУП «НПЦ МБК» НАН БЕЛАРУСИ

А.Н. ЛЕВАДНЫЙ, Ю.Ф. ЯЦЫНА, М.В. МАКСИМОВА Республиканское унитарное предприятие «Научно-производственный центр многофункциональных беспилотных комплексов» НАН Беларуси, Минск, Беларусь

В качестве целевой нагрузки БЛА «Буревестник», «Бусел-М», дронов — мишеней на предприятии «НПЦ МБК» разработана и производятся линейка из ОЭС различного типа и веса. Целевая нагрузка БЛА предназначена для выполнения задач по мониторингу земной поверхности, неподвижных и подвижных объектов, как показано на рис.1

Рис. 1. Пример видовой информации мониторинга земной поверхности

Наиболее универсальными и большими по массе - до 12кг, являются многофункциональные гиростабилизированные ОЭС на дальности наблюдения 5км и 15км, которые показаны на рис. 2, в состав которых входит видеокамера видимого диапазона, ИК-модули, лазерный дальномер, лазерная указка.

Рис. 2. Многофункциональные гиростабилизированные ОЭС.

Назначение многофункциональных ОЭС:

- получение телевизионного и тепловизионного изображения местности при выполнении функций наблюдения, поиска, обнаружения, распознавания и автоматического сопровождения наземных объектов;
 - измерения дальности до выбранного объекта;
- определение характеристик объекта (координаты, размер, направление движения);
- сжатие видеопотока, запись видеоинформации (встроенная флэшпамять 128 GB);
- подсветка выбранных объектов лазерного осветителя в ближнем ИК-диапазоне.

Особенностями таких ОЭС являются наличие производительного бортового микрокомпьютера с операционной системой Linux, который производит обработку видеоинформации, реализует функции автоматического трекинга объекта.

Основные технические характеристики приведены в таблице.

Таблица

1. Телевизионный модуль		
·		CMOS
Сенсор		
Количество активных пиксе-	пиксел	2,3 Мпикс
ЛОВ		D ~ (AUC) 0.4 0.75
Спектральный диапазон	MKM	Видимый (VIS) 0.4 — 0.75 мкм
		Ближний ИК (NIR) 0.75 — 1.1 мкм
		70
Оптическое увеличение	крат	70 крат
Поле зрения по горизонтали	градус	1.4° - 54.0°
Формат (стандарт) видеоизоб-		Цифровое видео 720р/1080р
ражения		
2. ИК модули		
Тип сенсора		Неохлаждаемый микроболометр
Количество пикселов		640*512 пикселей
Спектральный диапазон	MKM	8-4 мкм
Фокусное расстояние	MM	Вариобъектив 20-100мм или фиксиро-
		ванные объективы
3. Модуль лазерного дально-		
мера		
Дальность измерения	M	100-15000 м
Точность измерения	M	±2 м
Длина волны излучения	HM	1535 нм
4. Лазерный подсветчик (оп-		Дальность до 1000 м, длина волны
ция)		850нм
5. Гиростабилизированный		Двухосевой, с бесколлекторными элек-
электропривод		тромоторами
6. Модуль обработки видео-		Микрокомпьютер с ОС Linux
изображения и управления		
Преобразование в стандарт		Стандарт Н.264, настройка сжатия и
Ethernet, сжатие видеопотока		скорости видеопотока
Автоматическое сопровожде-		Адаптивное окно слежения
ние объекта по угловым коор-		Минимальное - 16×16 пикселей,
динатам		максимальное - 128×128 пикселей
7. Общие характеристики		
Вес	КГ	12
Диапазон рабочих температур	°C	-20 °C +40 °C;
Потребляемая мощность	Вт	40-120
ттотреолистии мощпоств	וען	10 120

В классе легких ОЭС массой до 1,5кг выпускаются гиростабилизированные по двум осям системы с различным сочетанием каналов наблюдения (ИК-ЛД, ТВ-ЛД, ИК-ТВ, ТВ), внешний вид которых показан на рис. 3. Для таких систем разработана система цифровой стабилизации по третьей оси - по крену БЛА.

Рис. 3. Гиростабилизированные оптико-электронные системы для проведения работ, связанных с исследование леса и растительного покрова, разработана и применяется мультиспектральная ОЭС.

Дальнейшие работы по совершенствованию ОЭС направлены на улучшение качества изображения, увеличения дальности обнаружения объектов, внедрение искусственного интеллекта для решения задач наблюдения.

УДК 536.25

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ТЕПЛООТДАЧИ ПРИ СВОБОДНОЙ КОНВЕКЦИИ НА ОРЕБРЕННОЙ ПОВЕРХНОСТИ ДЛЯ ПРИМЕНЕНИЯ В СИСТЕМАХ ОХЛАЖДЕНИЯ БПЛА

Г.С. МАРШАЛОВА, А.Б. СУХОЦКИЙ Белорусский государственный технологический университет Минск, Беларусь

Современное развитие БПЛА характеризуется значительным увеличением времени полета, мощности бортовой вычислительной техники, датчиков и систем связи. Это приводит к резкому росту тепловыделения от ключевых компонентов: силовых установок, электроники, аккумуляторных батарей.

Ключевой задачей является поиск оптимума между растущими тепловыми нагрузками и жесткими ограничениями по габаритам, массе и энергопотреблению.

Серийные малые БПЛА для охлаждения используют элементы самого БПЛА (обшивку, крылья, перегородки). Такие БПЛА чаще всего выполняются из алюминиевых сплавов или композитов. Основными требованиями к материалам являются высокая теплопроводность,