

Рис. 2. Пример рабочего окна панели управления

Подобного рода блоки, интегрированные в лабораторные стенды, позволяют реализовывать несколько режимов работы следящей системы с ШД: режим постоянного вращения, режим одиночных шагов, режим синхронизации, режим реверсирования, режим ручного управления. Исследование режимов позволяет получить ряд зависимостей и определить влияние выбранного деления шага ШД на скорость и точность следящей системы, что в дальнейшем может быть использовано при проектировании более сложных конструкций.

УДК 621.355

ПРОГНОЗИРОВАНИЕ ФАКТИЧЕСКОЙ ЕМКОСТИ ПАРАЛЛЕЛЬНО-ПОСЛЕДОВАТЕЛЬНЫХ СБОРОК ЛИТИЙ-ИОННЫХ ЯЧЕЕК МЕТОДОМ МОНТЕ-КАРЛО

К.В. ДОБРЕГО¹, В.Л. ЧЕРВИНСКИЙ², А.С. КАЛЕДНИК²
¹ ООО «Белинвестторг» холдинг 1АК GROUP
² Белорусский национальный технический университет
Минск, Беларусь

В связи с развитием электротранспорта, ростом «зеленой» энергетики, необходимостью регулирования нагрузки энергосистем рост рынка аккумуляторных батарей (АКБ) в последнее десятилетие составлял 20–30 % в год [1].

Батарейные подсистемы построены как последовательно-параллельные сборки электрохимических ячеек. Ячейки не являются абсолютно

одинаковыми устройствами, емкость сборки зависит от разброса параметров составляющих ее ячеек, структуры сборки, режима зарядки – разрядки, особенностей работы системы управления батареей (BMS) и других факторов. Важным вопросом является - какова фактическая емкость батареи и как она может изменяться в процессе эксплуатации. Основным способом решения задачи является прямое моделирование работы сборки ячеек на уровне электрохимических моделей, эмпирических моделей [2,3] с заданием обоснованного разброса параметров. Применение существующих моделей в контексте рассматриваемой задачи затруднительно ввиду их сложности и отсутствия информации о разбросе электрических, химических, структурных и прочих параметров ячеек.

В работе [4] предложена методика моделирования работы сборок литий-ионных ячеек как системы ячеек со статистически распределенными параметрами. Рассматривалась регулярная зарядка- разрядка постоянным током последовательной сборки (16s) литий ионных LiFePO4 ячеек. Настоящая работа посвящена применению указанного подхода для моделирования более сложной системы, - параллельной пары литий ионных батарей.

Аппроксимируем экспериментальную зависимость $V_{OC}(SOC)$ [2] статистической функцией (1).

$$V_{OC} = E_0 + A \cdot SOC + B \cdot exp((SOC - 1)/D) - F \cdot exp(-G \cdot SOC),$$
 (1) где E_0 , A , B , D , F , G - параметры модели. Используем (1) для моделирования электрических параметров ячеек.

Напряжение на ячейке представляется в виде суммы напряжения разорванной цепи, падения напряжения на активном сопротивлении и поляризационного напряжения.

$$U=V_{oc} - I(R_a+R_p)$$
 (2)

Параметры модели (1), (2) не зависят от направления тока (разрядка или зарядка). Незначительный гистерезис функции $V_{oc}(SOC)$ при смене направления тока не учитывается. Значение SOC рассчитывается по величине протекшего заряда и емкости.

$$SOC = 1 - \int_0^t Idt /C . (3)$$

В основе метода лежит гипотеза о том, что при равном статистическом разбросе всех параметров модели (1)-(3) генерируемое множество кривых зарядки/ разрядки адекватно реальному множеству. Значения всех параметров распределены по нормальному закону с одинаковым относительным стандартным отклонением.

Статистическая модель ячейки. Согласно статистики компании 1AK-GROUP средняя емкость партии литий-ионных ячеек превышает

номинальную $C \approx C_H(1+2\cdot\sigma_0)$, где C_H – номинальная емкость, σ_0 – относительное стандартное отклонение емкости ячеек в партии. Так при C_H =105 $A\cdot q$ и σ_0 = 1% C = 107,1 $A\cdot q$. Емкость ячейки C_i определяется в цикле зарядки – разрядки в диапазоне U = 2,5 – 3.65 B при этом определяются параметры C и σ , C Табл.1.

Табл.1. Параметры статистической модели ячейки ((1)-(3))

Сном	Uop,	E ₀ ,	A, B	B, B	D,	F, B	G,	R_a ,	R _p ,	C,	σ
А·ч	В	В			б.р.		б.р.	мΩ	$_{ m M}\Omega$	А∙ч	
105	3,1 -	3,2	0,122),255	0,011	0,39	30,9	0,93	0,6	107.	0.9%
	3,4	2	3		7	722	828			1	

Ниже представлены расчеты эволюции емкости батареи s16 при циклировании при разных начальных значениях разброса SOC ее ячеек (σ_{SOC}) и для разных режимов балансировки. Среднее значение и разброс определялись на основании расчёта группы 30 батарей со случайным набором ячеек. Базовый вариант параметров: $\sigma_{SOC} = 5\%$; ток балансировки $I_6 = 1$ A; порог напряжения для начала балансировки $\Delta U_6 = 0.2$ B; время балансировки $\Delta \tau_6 = 10$ сек.

Рис.1. Статистический тренд выхода емкости модуля на максимальное значение от количества циклов N. Базовые параметры балансировки. 1, 2, 3, 4 $-\sigma_{SOC} = 0\%$, 3%, 5% и 10% соответственно

Скорость выхода емкости на максимальное значение зависит как от тока балансировки, так и от периода балансировки $\Delta \tau_6$, рис.1.

В [4] показан эффект срыва балансировки при снижении порога напряжения начала балансировки ΔU_6 ниже определенного значения, рис.2.

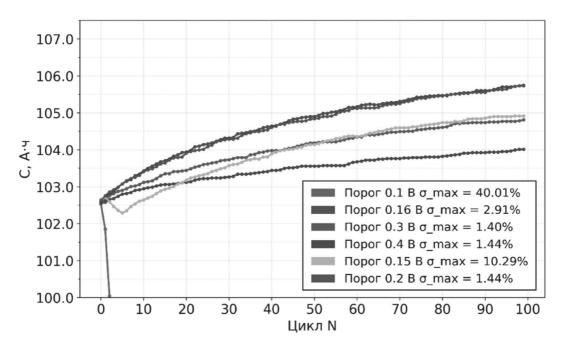


Рис.2. Статистический тренд выхода емкости модуля на максимальное значение от количества циклов N, σ_{SOC} =5%. 1, 2, 3, 4, 5 – порог начала балансировки ΔU_6 =0.1, 0.15, 0.16, 0.2, 0.3 и 0.4 В соответственно

Согласно рис. 2, при ΔU_6 =0.1, балансировка не выравнивает SOC ячеек. Граница, разделяющая режим эффективной балансировки от режима ее срыва - ΔU_{66} ~0.15 B.

Обратимся к исследованию работы параллельных батарейных модулей. Каждый из модулей управляется независимой BMS. Зарядка и разрядка пары производится стабилизированным током (при режиме 0.5C ток 105 A). Ток разделяется в соответствии с ЭДС (ϵ) и внутренним сопротивлением батарей ϵ 1 и ϵ 2:

$$I_1 = \frac{I * r_2}{r_1 + r_2} - \frac{\varepsilon_1 - \varepsilon_2}{r_1 + r_2}, \qquad I_2 = I - I_1,$$
 (5)

где I > 0 , U > E1, E2 при зарядке и I < 0, E1, E2 > U при разрядке.

На рис. 3 представлен результат статистического расчета для группы 30 пар модулей токов первого цикла зарядки — разрядки. Начальный статистический разброс степени заряженности ячеек в модуле σ_{SOC} =5%. При моделировании реализован базовый режим балансировки с порогом начала балансировки ΔU_6 =0.2 В.

Как видно, при высокотоковых режимах зарядки велика вероятность превышения порога допустимого тока для одного из модулей и, как следствие, выключение и недозарядка модуля.

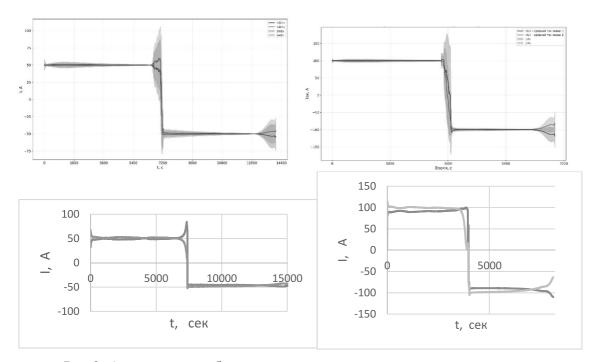


Рис.3. Амплитуда дисбаланса токов зарядки- разрядки первого цикла и ее относительное среднеквадратичное отклонение для 30 случайных пар модулей (верхние рисунки) экспериментальные данные (нижние рисунки). Ток 0.5С (слева) и 0.95С (справа). $\sigma_{SOC}=5$ %.

Интересный результат - наличие области схождения токов к номинальному значению на уровне $SOC \approx 90\%$ при зарядке и уровне $SOC \approx 25\%$ - при разрядке, что подтверждено экспериментами.

В табл. 2 и 3 приведены результаты статистических расчетов дисбаланса токов зарядки и зарядки и общей емкости от параметров системы. Дисбаланс рассматривался только при работающих модулях.

Табл. 2. Максимальный дисбаланс токов при зарядке и разрядке, соответствующие величины относительного среднеквадратичного отклонения, а также емкость цикла C_{fact} .

σsoc, %	<i>, A</i>	I ₁ -I ₂ _{max,chr}	$\sigma_{\Delta Ichr}$	I ₁ -I ₂ _{max,dchr}	$\sigma_{\Delta Idchr}$	Cfact, A.4
0	50	35.932	4.375	59.879	10.161	101.536
1	50	34.964	4.251	51.533	9.961	101.279
3	50	32.068	3.906	46.405	9.900	100.225
5	50	28.719	3.649	46.550	10.000	98.864

Фактическая емкость пары снижается с ростом начального расхождения $\sigma_{SOC,,}$ при этом дисбаланс токов также снижается с увеличением начального разброса SOC, что объясняется тем, что недозаряд и общее снижение емкости пары, обусловленное ростом $\sigma_{SOC,}$ сильнее влияет на снижение дисбаланса токов чем рост σ_{SOC} на его увеличение.

Табл. 3. Максимальный дисбаланс токов при зарядке и разрядке, соответствующие величины относительного среднеквадратичного отклонения, а также емкость цикла C_{fact} при различных токовых режимах iC. $\sigma_{\text{SOC}}=3$ %.

iC	<i>, A</i>	I ₁ -I ₂ max,chr	$\sigma_{\Delta Ichr}$	[1-I2 max,dchr	$m{b}\Delta Idchr$	Cfact, А.ч
0.25	25	25.72	3.45	2.13	5.14	100.63
0.5	50	35.85	4.41	4.24	0.36	100.74
0.9	90	59.53	6.98	5.53	5.12	99.47

Исследуем характер изменения дисбаланса токов и общей емкости пары модулей при многократном циклировании, рис.4, 5.

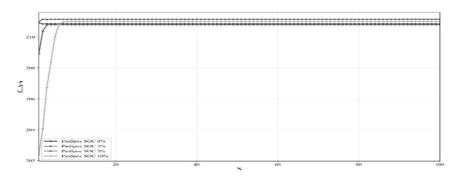


Рис. 4. Изменение доступной емкости параллельной пары от количества зарядно- разрядных циклов N. Ток 0.5С; ΔU_6 = 0.15 B. 1, 2, 3, 4 - σ_{SOC} = 0, 3, 5 и 10 %

Характерным поведением вновь собранной параллельной пары модулей является разбежка показываемой токовой емкости модулей на первых 5-10 циклах с последующей стабилизацией емкости каждого модуля и пары в целом.

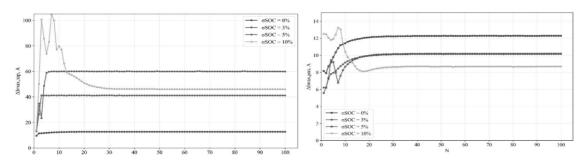


Рис. 5. Зависимость $\Delta Imax, chr$ и $\Delta Imax, dchr$ от количества циклов N. Ток 0.5С. $\Delta U_6 = 0.15$ В. 1, 2, 3, 4 - $\sigma_{SOC} = 0$, 3, 5 и 10 %

ЛИТЕРАТУРА

1. Лемешевский В.М. Развитие аккумуляторной отрасли и стратегическое позиционирование холдинга 1ak-group. *Механика машин, механизмов и материалов*. 2025. № 3(72), С.92- 96

- 2. Добрего К.В., Козначеев И.А., Червинский В.Л. Моделирование пассивного сопряжения блоков гибридной системы накопления электроэнергии. Энергетика. Известия высших учебных заведений и энергетических объединений СНГ. 2024; т.676 №3, С. 209-227
- 3. Doyle, M.; Newman, J. The use of mathematical modeling in the design of lithium/polymer battery systems. *Electrochim. Acta* 1995, *40*, 2191–2196.
- 4. Добрего К.В., Лемешевский В.М., Червинский В.Л., Каледник А.С. Оценка рабочей емкости сборок литий-ионных аккумуляторов методом Монте- Карло. Сб. докладов Межд. науч. конф. «Современные электрохимические технологии и оборудование» МЕТЕ 2025 19-23 мая 2025, сс.61-64.

УДК 681.532.8:621.391

ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ СИСТЕМЫ УПРАВЛЕНИЯ ГИРОСТАБИЛИЗИРОВАННОГО ОПОРНО-ПОВОРОТНОГО УСТРОЙСТВА

Д.С. КАРПОВИЧ, И.О. ОРОБЕЙ, В. В. САРОКА, ЧЖЭН ЮЙТЯНЬ Белорусский государственный технологический университет Минск, Беларусь

При проектировании системы управления гиростабилизированного опорно-поворотного устройства (ГОПУ) необходимо уделить внимание таким вопросам как обеспечение высокой динамической точности наведения при движении объекта-носителя, обеспечение требований по количеству осей, диапазону и шагу углов наведения, требований по прочности элементов, устойчивости при воздействии механических вибраций и ударов, учет возможной инерции при позиционировании, подстройка под возможное изменение положения платформы, наряду с выполнением требований по массе и условиям размещения на объекте.

Высокая динамическая точность приводов наведения может быть обеспечена за счет выбора соответствующего закона управления, использования быстродействующих исполнительных устройств и механических передач с высокой жесткостью и малой зоной нечувствительности. Требования по минимизации массы и условиям размещения ГОПУ на объекте может быть устранено при использовании безредукторных приводов.

Погрешность измерения углов поворота ГОПУ определяется точностью физического метода измерения, собственной погрешностью