Студ. А.Э. Рамазанов Науч. рук. ассист. А.И. Савельев (кафедра органической химии, БГТУ),

доц. А.И. Потапович (кафедра физиологии человека и животных, БГУ), зав. кафедрой В.Н. Леонтьев (кафедра биотехнологии, БГТУ)

ПРОТИВООПУХОЛЕВАЯ АКТИВНОСТЬ ПРОИЗВОДНЫХ 2,3,4,9-ТЕТРАГИДРО-1*H*-КАРБАЗОЛ-1-ОНА

Механизм действия ряда противоопухолевых препаратов основан на их способности взаимодействовать с нуклеофильными группами нуклеиновых кислот. Объектами исследования являются производные 2,3,4,9-тетрагидро-1*H*-карбазол-1-она, замещенные по атому азота функциональными группами, которые обеспечивают им алкилирующую способность.

Соединения 1а-1в получены согласно представленной ниже схеме:

$$SeO_2$$
, $AUONCCAH$ $AUONCCAH$

Противоопухолевую активность соединений 1a-1b изучали на клеточной линии аденокарциномы молочной железы человека МСF-7. Жизнеспособность клеток оценивали через 24 ч инкубации с помощью реагента $PrestoBlue^{T}M$.

Таблица 1 – Процент повреждения клеток при различных концентрациях синтезированных соединений в ДМСО

Соединение	0 мкМ	10 мкМ	50 мкМ	100 мкМ	200 мкМ
1a	0±6,5	0±3,4	28,9±6,4	60,4±4,1	92,6±2,7
16	0±5,1	0±5,6	0±8,7	16,3±7,6	61,2±7,0
1в	0±5,1	0±8,2	0±8,1	4,2±13,1	44,7±5,4

Полученные результаты свидетельствую о том, что все соединения ингибируют развитие аденокарциномы. Однако наибольшей активностью обладает соединение 1a, которое начинает оказывать противоопухолевое действие уже при концентрации 50 мкM, а при 200 мкМ – приводит к гибели ~ 93 % клеток.

Можно предположить, что тетрагидрокарбазолоны за счет плоской структуры скелета интеркалируют в спираль ДНК и алкилируют азотистые основания, взаимодействуя в первую очередь с их аминогруппами.