ЗАЩИТНЫЕ КОНВЕРСИОННЫЕ ФОСФАТНЫЕ ПОКРЫТИЯ НА СПЛАВАХ МАГНИЯ

А.А. ШИРВЕЛЬ, А.В. ПОСПЕЛОВ, М.В. ДЯДЕНКО Белорусский государственный технологический университет Минск, Беларусь

Среди конструкционных материалов промышленного назначения магний и его сплавы являются самыми легкими, характеризуются высокими удельными прочностью и теплоемкостью, отличной обрабатываемостью резанием, способностью поглощать энергию вибрационных колебаний и удара. При легировании плотность сплавов магния может снижаться до 1,3 г/см³, а удельный модуль упругости больше, чем у стали. Благодаря этим свойствам сплавы магния находят все большее применение для повышения жесткости и уменьшения массы отдельных некритических узлов деталей машин. Использование материалов на основе магния при изготовлении беспилотных летательных аппаратов (БПЛА) позволяет, прежде всего, увеличить пластичность конструкционных материалов, а за счет снижения веса отдельных деталей — существенно увеличить время полета и полезную нагрузку аппаратов.

Одной из главных проблем производства и использования металлических конструкционных материалов на основе магния и его сплавов является их подверженность коррозионному разрушению. По различным данным годовые потери металла от коррозии в мире составляют около 30 % от его производства и оцениваются суммой порядка 2,5 трлн. долл. США, достигая в некоторых странах 3–5 % ВВП. Правильный выбор и применение доступных методов антикоррозионной защиты позволяют снизить расходы, связанные с коррозией на 15–35 %, а также повысить безопасность и надежность эксплуатации металлоконструкций.

Для решения проблемы повышения коррозионной устойчивости предложены две основные стратегии: оптимизация химического и фазового состава сплавов с использованием различных легирующих элементов, а также модификация поверхности путем создания функциональных покрытий. Для магниевых сплавов более предпочтительной является химическая и/или механическая модификация поверхности, что обусловлено легкостью обработки и дешевизной используемых материалов и реагентов [1]. Обработка магневых сплавов методом нанесения на поверхность конверсионных фосфатных покрытий позволяет использовать их в качестве силовых элементов планера, корпуса и кронштейна.

Целью исследования было изучение влияния процесса фосфатирования на коррозионное поведение образцов магниевого сплава AZ91в модельном хлоридсодержащем растворе.

Объектом исследования являлся легированный алюминием, марганцем и цинком магниевый сплав AZ91. Фосфатирование предварительно подготовленных образцов проводили методом погружения в растворследующего состава, моль/дм 3 : Ca(NO $_3$) $_2$ -0.4; H $_3$ PO $_4$ -0.2 (pH 3.2). Проведенные исследования показали, что наиболее качественные однородные покрытия формируются при температуре электролита фосфатирования 70° C и продолжительности процесса 60 минут.

Исследование коррозионных свойств образцов магниевых сплавов проводили методами линейной вольтамперометрии и электрохимической импедансной спектроскопии на потенциостате/гальваностате AUTOLAB PGSTAT 302N в растворе, содержащий 8 г/дм³ NaCl (pH=7,4).

На рисунке 1 представлены поляризационные кривые образцов сплава AZ91 до (a) и после (δ) фосфатирования в хлоридсодержащем растворе, а в табл. 1 приведены результаты электрохимических параметров коррозии, рассчитанные по данным линейной вольтамперометрии.

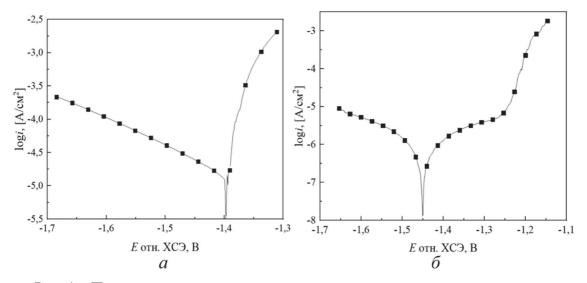


Рис. 1 — Поляризационные кривые, снятые в модельном хлоридсодержащем растворе, образцов сплава магния AZ91 до (a) и после фосфатирования (δ)

Табл. 1 — Электрохимические параметры коррозии образцов сплава магния AZ91 в хлоридсодержащем растворе

Образец	aa, B	ba, B	ak, B	$ b_{\mathbf{k}} $, B	$i_{\text{кор}}$, мкА/см ²	E_{kop} , B
исходный	-1,34	0,01	-2,45	0,217	13,3	-1,39
после фосфатиро- вания	0,10	0,26	-2,68	0,21	1,45	-1,45

Как видно из представленных данных, смещение потенциала от его стационарного значения в катодную область приводит к монотонному возрастанию плотности тока, что объясняется интенсификацией процесса выделения водорода. При этом катодная ветвь поляризационной кривой исходного сплава AZ91 линейна в широком интервале потенциалов и характеризуются углом наклона 217 мВ. Анодная поляризация образца приводит к существенной интенсификации электродных процессов. Анодная ветвь тафелевских кривых сплава AZ91 характеризуются углом наклона 10 мВ. При этом углы наклона катодных и анодных ветвей поляризационной кривой фосфатированных образцов магниевого сплава различаются между собой. На анодной ветви поляризационной кривой образца сплава AZ91 присутствуют два участка: активно-пассивная область и область активного растворения. Излом на анодной ветви, который соответствует значению потенциала –1,25 В, характеризует потенциал пробоя. Угол наклона анодной ветви поляризационной кривой в активнопассивной области составляет 210 мВ, а катодной ветви – 260 мВ.

Согласно полученным данным, плотность токов коррозии нефосфатированного образца сплава AZ91 составляет 13,3 мкA/см². Фосфатирование магниевых сплавов способствует снижению плотности тока коррозии более, чем в 9 раз. При этом значение плотности тока коррозии снижается до 1,45 мкA/см².

На рисунке 2 представлены полученные в растворе хлорида натрия спектры импеданса в виде диаграммы Найквиста сплава магния AZ91 до (a) и после (δ) фосфатирования, а в таблице 2 приведен подбор параметров соответствующей им эквивалентной схемы.

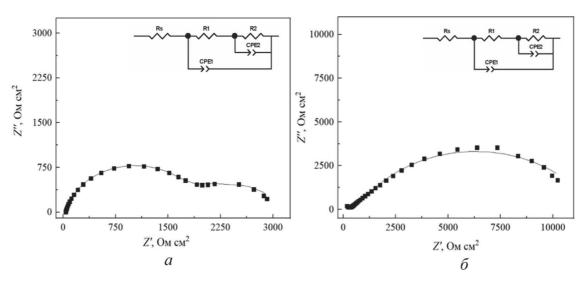


Рис. 2 — Спектры импеданса в виде диаграммы Найквиста в растворе хлорида натрия и соответствующая эквивалентная схема образцов сплава магния AZ91 до (a) и после фосфатирования (δ)

На спектрах импеданса наблюдается наличие двух временных констант: полуокружность в области высоких и средних частот и полуокружность в области низких частот. Согласно полученным результатам, поляризационное сопротивление (R_p) фосфатированных образцов сплава AZ91 составляет 11813 Ом·см², что соответственно в 3,97 раза больше по сравнению с поляризационным сопротивлением образцов без фосфатного покрытия (R_p =3000 Ом см²). Результаты электрохимической импедансной спектроскопии согласуются с представленными выше результатами линейной вольтамперометрии.

Табл. 2 – Подбор параметров эквивалентной схемы

Образец	$R_{\rm s}$, Om cm^2	R_1 , $Om cm^2$	$\frac{\mathrm{CPE_1},}{\mathrm{OM^{-1}cM^{-2}c^n}}$	nl	$ m R_2, \ Om \ cm^2$	$\frac{\mathrm{CPE}_2,}{\mathrm{OM}^{-1}\mathrm{cM}^{-2}\mathrm{c}^n}$	$R_{ m p},$ Om cm^2
исходный	35,69	1918	$1,58\cdot10^{-5}$	0,86	1082	$8,8\cdot10^{-4}$	3000,0
после фосфатирова- ния	224,6	886	5,71·10 ⁻⁶	0,62	10927	8,823·10 ⁻⁶	11813

Таким образом, проведенные исследования показали, что нанесение на магниевые сплавы серии AZ конверсионных фосфатсодержащих покрытий приводит к снижению почти на порядок токов коррозии образцов и увеличению примерно в 4 раза поляризационного сопротивления поверхности.

ЛИТЕРАТУРА

1. Atrens A. et al. Review of Mg alloy corrosion rates //Journal of magnesium and alloys. – 2020. – Vol. 8. – №. 4. – P. 989–998.