Студ. Д.А. Савич Науч. рук. ассист. А.А. Масехнович (кафедра биотехнологии, БГТУ)

ВЛИЯНИЕ РЕЖИМОВ АЭРАЦИИ НА ЭФФЕКТИВНОСТЬ БИОЛОГИЧЕСКОЙ ОЧИСТКИ СТОЧНЫХ ВОД

Нитчатое вспухание активного ила негативно влияет на процесс биологической очистки сточных вод. Изменение свойств ила (увеличение объема и ухудшение седиментации) приводит к его выносу из вторичных отстойников, сокращению необходимого прироста его биомассы и, как следствие, снижению эффективности очистки. В конечном итоге, описанные процессы станут причиной возникновения ряда серьезных экологических проблем [1].

Целью данной работы являлось установление влияния режимов аэрации на эффективность биологической очистки сточных вод.

Для проведения экспериментальной была разработана лабораторная модель, включающая три идентичных биореактора-аэротенка (БР), имитирующих процессы, протекающие в сооружениях биологической очистки. Каждый БР был заполнен 500 дм³ синтетической сточной воды и 500 дм³ суспензии активного ила.

В каждом БР был установлен различный режим аэрации: в БР1 концентрация растворенного кислорода поддерживалась на уровне 5,5 \pm 0,5 мг O_2 /дм³, в БР2 – 4,8 \pm 0,3 мг O_2 /дм³, а в БР3 – 2,6 \pm 0,4 мг O_2 /дм³. Эффективность биологической очистки оценивалась на основании определения показателей химического потребления кислорода (ХПК) и биохимического потребления кислорода (БПК) с использованием стандартных методик, описанных в [2].

Результаты проведенного исследования демонстрируют, что поддержание оптимального уровня аэрации (в условиях данного эксперимента — в диапазоне 4.8 ± 0.3 мг $O_2/дм^3$) способствует достижению высокой степени очистки как по ХПК, так и по БПК. Избыточная аэрация (БР1) может приводить к деструкции хлопьев активного ила, а недостаточная (БР3) — к развитию нитчатых микроорганизмов, что негативно сказывается эффективности очистки.

ЛИТЕРАТУРА

- 1. Маркевич, Р. М. Биотехнологическая переработка промышленных отходов : электронный курс лекций / Р. М. Маркевич, И. А. Гребенчикова, М. В. Рымовская. Минск : БГТУ, 2018. 301 с.
- 2. Маркевич, Р. М. Биотехнологическая переработка промышленных отходов. Лабораторный практикум / Р. М. Маркевич, И. А. Гребенчикова, М. В. Рымовская. Минск: БГТУ, 2019. 153 с.