- 2. Gibson I. Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing/ I. Gibson, D. Rosen, B. Stucker. New York: Springer, 2010. 459 p.
- 3. Ильющенко А.Ф. Аддитивные технологии и порошковая металлургия Минск: Медисонт, 2019. 260 с.
- 4. Определение критериев качества получаемых при 3D-печати изделий методом селективного лазерного сплавления металлических порошков // Ильющенко А. Ф., Николайчук Т. А., Лецко А. И. / Инновационные технологии в материаловедении и машиностроении (ИТММ-2024): материалы VIII Всерос. науч.-практ. конф. с междунар. участием, Пермь, 07–12 окт. 2024 г. Пермь: Пермский национальный исследовательский политехнический университет, 2024. С. 78–82.
- 5. Проектирование технологической камеры для послойного селективного лазерного сплавления и термообработки, получаемых при 3D-печати изделий // Ильющенко А. Ф., Лецко А. И., Кордикова Е. И. [и др.] Перспективы развития аддитивных технологий в Республике Беларусь: сб. докладов междунар. науч.-практ. симпоз. Минск: Беларуская навука, 2021. С. 52—61.
- 6. Анализ конструкций, использующих лазерное излучение 3D-принтеров для 3D-печати металлическими порошками: перспективы развития, методы их термического упрочнения / А.Ф. Ильющенко, А.И. Лецко, Н.М. Парницкий [и др.] // Перспективы развития аддитивных технологий в Республике Беларусь: сб. докладов Междунар. научларят. симпозиума. Минск: Беларуская навука, 2021. С. 62-83.

УДК 666.193

МОДИФИЦИРОВАНИЕ ТЕХНОЛОГИЧЕСКИХ ПАРАМЕТРОВ БАЗАЛЬТОВЫХ РАСПЛАВОВ ПУТЕМ ВВЕДЕНИЯ БОРСОДЕРЖАЩИХ КОМПОНЕНТОВ

Ю.Г. ПАВЛЮКЕВИЧ, А.П. КРАВЧУК, Ю.А. КЛИМОШ, Е.Е. ТРУСОВА

Белорусский государственный технологический университет Минск, Беларусь

Рост уровня требований к миниатюризации и маневренности БПЛА обусловливает расширение спроса на передовые конструкционные материалы, в частности композиты. Использование таких материалов

позволяет создавать легкие и высокопрочные конструкции, что напрямую обеспечивает повышение летно-технических характеристик БПЛА — по-казателей дальности полета, грузоподъемности, энергоэффективности и управляемости. Переход на композиционные материалы — стратегическая необходимость для обеспечения дееспособности и инновационного развития производства БПЛА.

Ключевое преимущество композиционных материалов заключается в возможности целенаправленного проектирования их свойств за счет выбора матрицы и армирующего наполнителя. Это позволяет получать материалы, адаптированные под конкретные условия эксплуатации.

Для армирования композитов в производстве БПЛА широко используются углеродные волокна и стекловолокно типа Е. Применение углеродных волокон, несмотря на исключительно высокие прочностные характеристики, модуль упругости и малый вес, ограничивается их горючестью и высокой стоимостью: цена углеволокна в 20–25 раз превышает стоимость стекловолокна типа Е.

Стекловолокно типа Е, в свою очередь, остается самым распространенным армирующим компонентом композитов благодаря сочетанию приемлемой устойчивости и низких цен. Однако стекловолокно Е имеет следующие недостатки: гигроскопичность, низкую устойчивость к щелочным средам.

Альтернативным решением является использование базальтовых непрерывных волокон, обладающих наилучшим соотношением стоимость/характеристики в сравнении с углеродным волокном и стекловолокном типа Е для получения композитов в производстве БПЛА. Производство непрерывного базальтового волокна является экологически безопасным процессом: оно не требует использования вредных компонентов, полностью соответствует современным требованиям, развитию декарбонизации промышленности и сокращению углеродного следа.

Непрерывное базальтовое волокно представляет собой материал, обладающий высокими физико-химическими свойствами, включая термостойкость, механическую прочность и химическую устойчивость. Однако получение стекловолокна высокого качества затрудняется колебаниями химического состава базальтов, высокой кристаллизационной склонностью расплавов и сложностью сохранения оптимальных реологических параметров при вытягивании волокна. Эти факторы приводят к вариативности температуры формования и нестабильности технологического процесса вытягивания волокна, что снижает выход годного продукта.

Целью настоящего исследования является повышение технологичности базальтовых расплавов для производства непрерывного волокна

путем введения в состав сырьевых композиций борсодержащего компонента — колеманита, включающего, мас.%: B_2O_3 39,90; CaO 26,92; SiO_2 5,28; MgO 2,79; SrO 1,32; Al_2O_3 0,15; Fe_2O_3 0,05; R_2O 0,11; SO_3 0,20; п.п.п. 23,28.

На основе базальта следующего химического состава, мас.%: SiO_2 54,03; Al_2O_3 18,21; $FeO+Fe_2O_3$ 9,96; CaO 7,94; MgO 3,63; Na_2O 2,51; K_2O 2,03; TiO_2 1,12; P_2O_5 0,17; MnO 0,16 при добавлении колеманита в количестве 5–20 мас.ч. (2–8 мас.% B_2O_3) подготовлены исследуемые сырьевые композиции.

Стекла на основе сырьевых композиций базальт–колеманит синтезированы в газовой пламенной печи при максимальной температуре 1480±10 °C.

Технологические параметры формования непрерывного волокна из расплава фильерным способом определяются температурной зависимостью вязкости, верхней температурой кристаллизации (температурой ликвидуса) и скоростью роста кристаллов, а также поверхностным натяжением расплава. Важными технологическими параметрами производства базальтовых волокон являются также начальная и конечная температуры плавления сырья, которые косвенно характеризуют энергозатраты на получение расплава.

Согласно результатам дифференциальной сканирующей калориметрии, введение колеманита обеспечивает сдвиг температурного интервала плавления сырьевых композиций на 80–100 °C по сравнению с чистым базальтом.

Установлено, что увеличение содержания B_2O_3 до 8 мас.% приводит к значительному подавлению кристаллизационной способности стекол: температурный интервал кристаллизации сужается, температура верхнего предела кристаллизации снижается с 1285 °C (для немодифицированного стекла) до 1160 °C. Это свидетельствует о повышении устойчивости к кристаллизации стекол, полученных при добавке колеманита к базальту.

Реологические свойства расплавов исследованы на вискозиметре RSV-1600. Установлено, что высокотемпературная вязкость расплавов снижается с увеличением содержания B_2O_3 , причём наиболее выраженный эффект наблюдается при концентрации оксида бора 2-4 мас.%.

В ходе экспериментальной проверки способности расплавов к волокнообразованию выявлено, что при содержании $B_2O_3 \ge 4$ мас.% обеспечивается улучшение процесса формования, он заметно стабилизируется, снижается частота обрывов волокна и повышается его качество.

Анализ данных определения прочности волокон показал, что изменение ее величины связано как с изменением структуры стекла (степени полимеризации), так и дефектности образцов. При увеличении содержания B_2O_3 прочность волокон увеличивается. Экстраполяция полученных зависимостей прочности волокна от состава сырьевой композиции и диаметра волокна, позволяет прогнозировать ее величину для волокна диаметром ~ 10 мкм более 2100 МПа, что соответствует уровню прочности современных аналогов.

Оценка устойчивости волокон к воздействию агрессивных сред проводилась по результатам определения водостойкости и щелочестойкости. Выявлено, что водостойкость волокон оставляет 99,4—99,6 %, что говорит о высокой инертности к водной среде. Щелочестойкость волокон, полученных с введением колеманита, находится в пределах 99,1—92,8 % и существенно не отличается от немодифицированных образцов.

Таким образом, добавка к базальту колеманита в количестве 10-15 мас.ч. (соответственно 4-6 мас.% B_2O_3) обеспечивает снижение температуры плавления композиции базальт—колеманит на $80-100\,^{\circ}\mathrm{C}$, снижение вязкости расплавов, подавление кристаллизации и расширение температурного интервала формования волокна, повышение прочности волокна, сохранение его высокой химической стойкости. Применение колеманита в производстве непрерывных базальтовых волокон позволит повысить их качество, снизить долю брака и затраты энергии на процессы стекловарения и формования волокна, увеличить срок службы фильерных питателей.

УДК 666.266.6-971

ТЕРМОСТАБИЛЬНЫЕ СТЕКЛОКРИСТАЛЛИЧЕСКИЕ МАТЕРИАЛЫ НА ОСНОВЕ СИСТЕМЫ Li₂O-Al₂O₃-SiO₂

Ю.Г. ПАВЛЮКЕВИЧ, М.В. ПАНЦЕВИЧ, У.В. БЕДНАРОВСКАЯ

Белорусский государственный технологический университет Минск, Беларусь

Разработка термостабильных оптически прозрачных материалов является актуальной задачей для аэрокосмической промышленности, высокоточной оптики и лазерной техники. Стеклокристаллические материалы (ситаллы) на основе системы $Li_2O-Al_2O_3-SiO_2$ обладают уникальным