ЛИТЕРАТУРА

- 1. Дориомедов, М.С. Российский и мировой рынок полимерных композитов (обзор) // Труды ВИАМ. -2020. № 6-7 (89). C. 29-37;
- 2. Латышевич И. А., Клюев А.Ю., Козлов Н.Г., Прокопчук Н.Р., Огородникова М.М. Получение, исследование состава и применение терпеноидномалеиновых аддуктов // Известия Санкт-Петербургской лесотехнической академии. 2017. Вып. 221. С. 294-308.
- 3. Клюев А.Ю., Латышевич И.А., Прокопчук Н.Р., Гапанькова Е.И., Козлов Н.Г. Новые направления переработки и использования сосновой живицы // Полимерные материалы и технологии. -2019.- Т. 5.- № 2.- С. 68-77.
- 4. Латышевич И.А., Гапанькова Е.И., Козлов Н.Г. Определение полноты полимеризации эпоксидных олигомеров // Известия Санкт-Петербургской лесотехнической академии. 2022. Вып. 238. С. 203—214.
- 5. Латышевич И.А., Гапанькова Е.И., Козлов Н.Г., Бильдюкевич А.В., Николаева К.В., Даниловой-Третьяк С.М. Определение оптимального содержания ускорителя полимеризации в эпоксидных связующих для полимерных композиционных материалов // Известия Санкт-Петербургской лесотехнической академии. 2022. Вып. 240. С. 211—222.
- 6. Гапанькова Е.И., Латышевич И.А., Козлов Н.Г., Бильдюкевич А.В. Оценка влияния длительности хранения на свойства препрегов и механические свойства лыж // Известия Санкт-Петербургской лесотехнической академии. 2023. Вып. 242. С. 189—203.
- 7. Латышевич И.А., Козлов Н.Г., Глевицкая Т.А., Гапанькова Е.И. Биоцидные свойства препрегов на основе терпеноидного сырья // Известия Санкт-Петербургского государственного технологического института (технического университета). 2024. Вып. 71 (97). С. 64–67.

УДК 66.021.3

СОВЕРШЕНСТВОВАНИЕ АППАРАТОВ ДЛЯ ОЧИСТКИ ТЕХНОЛОГИЧЕСКИХ ГАЗОВ ПРИ ПРОИЗВОДСТВЕ БПЛА

Д.Ю. МЫТЬКО, В.С. ФРАНЦКЕВИЧ, Р.И. ЛАНКИН Белорусский государственный технологический университет Минск, Беларусь

Современное производство беспилотных летательных аппаратов (БПЛА) — это симбиоз высоких технологий, точного машиностроения и химических процессов. Ключевым аспектом, определяющим летные

характеристики дронов, является применение современных материалов. Однако производство их деталей сопряжено с образованием технологических газов, требующих эффективной очистки. В данной статье мы рассмотрим эту взаимосвязь и сфокусируемся на использовании массообменных насадочных аппаратов со структурированной регулярной насадкой.

Детали БПЛА должны сочетать минимальный вес с максимальной прочностью, жесткостью и устойчивостью к внешним воздействиям. Этим требованиям в полной мере отвечают полимерные композиционные материалы, являющиеся основой современного БПЛА. Это, прежде всего, углепластики и стеклопластики. Их производство включает процессы пропитки волокон эпоксидными, полиэфирными или другими смолами, отверждения в автоклавах, а также механической обработки (резки, шлифовки). На этих этапах возможны выделения стирола, формальдегида, фенола, органических растворителей и мелкодисперсной пыли.

Таким образом, технологические газы на производстве БПЛА представляют собой сложную, многокомпонентную и часто высокоагрессивную смесь. Их очистка — не просто экологическое требование, а необходимое условие для обеспечения безопасности персонала и сохранения коррозионной стойкости дорогостоящего оборудования.

Для улавливания химических компонентов из газовых выбросов наиболее эффективным и широкоприменимым методом является абсорбция — процесс избирательного поглощения компонентов газовой смеси абсорбентом.

Аппаратом, в котором этот процесс реализуется, является абсорбер или скруббер. Классическим и самым распространенным типом является насадочный абсорбер. Его сердцем является насадка, которая обеспечивает развитие поверхности контакта между газом и жидкостью.

Эффективность насадочного аппарата напрямую зависит от типа используемой насадки: нерегулярные, регулярные насадки.

Преимущества регулярных насадок перед другими видами для производства БПЛА: низкое гидравлическое сопротивление, упорядоченная структура, высокая эффективность массообмена, равномерное распределение жидкости и газа по сечению аппарата, предсказуемость и масштабируемость, устойчивость к загрязнению.

На рис. 1 представлены регулярные насадки компании «Sulzer Chemtech»

Рис. 1. Регулярные насадки компании «Sulzer Chemtech»

Применения насадочных абсорберов с регулярными насадками для очистки технологических газов при производстве БПЛА позволяют создать энергоэффективные и компактные системы очистки. Внедрение таких аппаратов обеспечивает соблюдение экологических норм и снижение эксплуатационных затрат, что способствует развитию технологий в авиастроении.

ЛИТЕРАТУРА

- 1. Фарахов М.И., Лаптев А.Г., Башаров М.М. Модернизация массообменных аппаратов новыми насадками в химической технологии // Теоретические основы химической технологии. 2015. №3. С. 247—252.
- 2. SULZER Structured packings [Электронный ресурс]. URL: https://tisys.ru/services/catalog/meshalki-miksery-smesiteli/staticheskie-smesiteli-sulzer-/?sphrase id=23957 (дата обращения 12.10.2022).

УДК 621.762:621.791.92

ОПРЕДЕЛЕНИЕ ВОЗМОЖНОСТИ ПРИМЕНЕНИЯ МЕТОДА СЕЛЕКТИВНОГО ЛАЗЕРНОГО СПЛАВЛЕНИЯ МЕТАЛЛИЧЕСКИХ ПОРОШКОВ ДЛЯ 3D-ПЕЧАТИ ОПТИМИЗИРОВАННЫХ ДЕТАЛЕЙ БПЛА

А.Ф. ИЛЬЮЩЕНКО, А.И. ЛЕЦКО, Т.А. НИКОЛАЙЧУК, О.О. КУЗНЕЧИК, Н.М. ПАРНИЦКИЙ

Государственное научное учреждение «Институт порошковой металлургии имени академика О.В. Романа» Минск, Беларусь

Аннотация. В работе рассмотрена возможность применения метода селективного лазерного сплавления (СЛС) и топологической