4. Корольченко Д.А., Шароварников А.Ф., Дегаев Е.Н. Лабораторная методика определения изолирующих свойств пены на поверхности гептана. Пожаровзрывобезопасность. 2014. Т. 23. № 4. С. 72-76.

УДК 628.39

КЛАССИФИКАЦИЯ ПРУДОВ-НАКОПИТЕЛЕЙ, КАК ИСТОЧНИКОВ ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЙ

Цейко А.Р.

Касперов Г.И., к.т.н., доцент

Белорусский государственный технологический университет

Одной из сфер окружающей природной среды, подвергаемой высокой техногенной нагрузке и одновременно представляющей источник и причину многих негативных явлений и катастроф, является геологическая среда. К ней, как известно, относится приповерхностная часть литосферы (верхняя часть земной коры), которая подвергается изменениям в результате производственной деятельности человека [22]. Для решения многих научных и практических задач по проектированию прудов исключительно важное значение приобретает систематизация разнообразных сведений о них и на основе этой систематизации разработка универсальной их классификации. Однако разработка такой классификации требует одновременного учета многих природных, хозяйственных, технических, гидроэкологических и социальных аспектов. Пруды используются в самых разнообразных целях: для сельскохозяйственного водоснабжения, орошения, разведения рыбы и водоплавающей птицы, в рекреационных и противопожарных целях и т. д. Помимо своего основного функционального назначения они способствуют повышению влажности воздуха, снижению максимальных расходов воды рек и временных водотоков и уменьшению эрозионной деятельности.

Функционально-генетическую классификацию прудов можно представить в следующем виде [1,2].

По способу сооружения пруды разделяются на три группы: вырытые (рытые), обвалованные (польдерные) и наиболее распростраенные — запрудные или плотинные. Для технологических целей используются прудыотстойники, пруды-накопители (буферные пруды), пруды-накопители-испарители, аварийные емкости, пруды ливневых вод, шламонакопители которые имеются в системах канализации предприятий.

Все они представляют собой земляные емкости полностью или частично заглубленные и обвалованные, в которых постоянно или периодически содержатся промышленные сточные воды различной степени загрязненности. Эти воды в той или иной мере являются источниками загрязнения подземных вод. Прудынакопители могут применяться только к таким сточным водам, которые не претерпевают существенных изменений при хранении. Эти пруды служат для хранения сточных вод в течение какого-то определенного критического периода, чтобы предотвратить их выпуск.

Таблица – Функционально-генетическая классификация прудов

Классификационный показатель	Классификация				
1 Функциональное	1. Комплексного назначения. 2. Сельскохозяйственного и промышленного				
назначение	водоснабжения. 3. Оросительные. 4. Мельничные. 5. Противоэрозионные.				
	6. Хозяйственно-бытовые. 7. Рыбоводческие: а) нагульные; б) маточные;				
	в) нерестовые; г) выростные; д) зимовальные. 8. Рекреационные.				
	9. Противопожарные. 10. Ландшафтно-декоративные: а) приусадебные;				
	б) садово-парковые. 11. Пруды-отстойники.				
2 По способу сооружения	1. Запрудные. 2.Обвалованные (польдерные). 3. Вырытые: а) пруды-копани;				
	б) карьерные.				
3 По морфометрическим	1. По объему: a) очень малые менее 10 тыс. м ³ ; б) малые от 10 до 100 тыс.				
характеристикам	M^3 ; в) средние от 100 до 500 тыс. M^3 ; г) крупные до 1 млн. M^3 . 2. По площади:				
	а) малые до 2 га; б) средние от 2 до 10 га; в) большие от 10 до 50 га; г) очень				
	большие более 50 га. 3. По глубине: а) мелководные до 1,5 м;				
	б) среднеглубокие от 1,6 до 3,0 м; в) глубокие от 3 до 4,5 м; г) очень				
	глубокие более 4,6 м.				
4 По геоморфологическим	1. По положению в гидрографической сети: а) овражно-балочные;				
особенностям	б) русловые. 2. По размещению на водосборе: а) одиночные;				
	б) каскадные; в) веерные; г) каскадно-веерные. З. По форме: а) узкие				
	лентовидные; б) линейно-вытянутые; в) удлиненного треугольника;				
	г) разветвленные; д) сложные.				
5 По эволюционно-	1. По стадиям эволюции: а) становления; б) стабильности; в) отмирания.				
возрастным показателям	2. По возрасту: а) молодые; б) зрелые; в) среднего возраста; г) старые;				
	д) очень старые. 3. По степени зарастаемости: а) не заросшие;				
	б) слабозаросшие; в) заросшие; г) сильнозаросшие.				

Классификационный показатель	Классификация		
6 По источникам питания и	1. По источникам питания: а) снеговое; б) грунтовое; в) смешанное;		
водному режиму	г) искусственное. 2. По уровенному режиму: а) неустойчивый;		
	б) повышение уровня весной. 3. По характеру регулирования стока: а)		
	полное; б) многолетнее; в) годовое (сезонное). 4. По водоудерживающей		
	способности: а) хорошая; б) средняя; в) плохая.		

ЛИТЕРАТУРА

- 1. Михно В. Б. Ландшафтно-экологические особенности водохранилищ и прудов Воронежской области / В. Б. Михно, А. И. Добров. Воронеж: Воронеж. гос. пед. ун-та, 2000. 185 с.
- 2. Мишон В. М. Река Воронеж и ее бассейн: ресурсы и водно-экологические проблемы / В.М. Мишон. Воронеж: Изд-во Воронеж. ун-та, 2000. 296 с.

УДК 614.843.4

ВЛИЯНИЕ ДОПОЛНИТЕЛЬНОГО МЕХАНИЧЕСКОГО СОПРОТИВЛЕНИЯ И АЭРАЦИОННЫХ ОТВЕРСТИЙ В ВОДОПЕННОМ НАСАДКЕ НА КРАТНОСТЬ ВОЗДУШНО-МЕХАНИЧЕСКОЙ ПЕНЫ

Чан Дык Хоан, Максимович Д.С.

Камлюк А.Н., к.физ.-мат.н., доцент

ГУО «Командно-инженерный институт» МЧС Республики Беларусь

Кратность пены определяли на стенде для определения кратности и устойчивости пены низкой кратности [1]. Для этого, после стабилизации давления перед ручным пожарным стволов с установленным водопенным насадком, заполняли мерную емкость стенда воздушно-механической пеной. Затем на весах определяли ее массу. После определения массы полученной пены, кратность пены рассчитывали по формуле

$$K = \frac{V_{II}}{V_{p}} = \frac{V_{II} \cdot \rho_{p}}{m_{2} - m_{1}},$$

где V_{Π} – объем мерной емкости, дм³; m_1 – масса мерной емкости, кг; m_2 – масса мерной емкости, заполненной пеной, кг.

Измерение кратности воздушно-механической пены при исследовании влияния механического сопротивления проводили для трех экспериментальных насадков с диаметром сопла 9, 11 и 13 мм (см. таблицу).

Таблица – Виды и размеры сопла водопенных насадков

№ опытного образца	Вид и размеры насадка	Диаметр сопла	Диаметр сопла насадка d_2 , мм
водопенного		насадка d_1 ,	
насадка		MM	
1	d d	14	9
2	ē	14	11
3	1	14	13

Исследования проводили для трех случаев: при отсутствии в корпусе насадка металлической сетки; при установленной в корпусе насадка металлической сетки с прямоугольными ячейками площадью 4 мм²; при установленной в корпусе насадка металлической сетки с прямоугольными ячейками площадью 1 мм².

Результаты проведенных экспериментальных исследований представлены на рисунке 1.

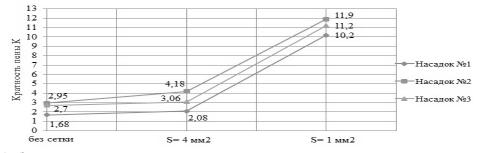


Рисунок 1 – Зависимость кратности воздушно-механической пены от дополнительного механического сопротивления