1. ТЕХНОЛОГИЯ ЛЕСОЗАГОТОВОК И ТРАНСПОРТА ЛЕСА

УДК 630* 378

О.С.БУРМЕЙСТЕР, канд. техн. наук, доцент, В.В.ФРОЛОВ, Е.С.САНКОВИЧ (БТИ)

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ ЛЕСОСПЛАВА В ПЛОСКИХ СПЛОТОЧНЫХ ЕДИНИЦАХ

Лесосплав в плоских сплоточных единицах на реках СССР проводится в настоящее время в незначительных объемах и сравнительно плохо изучен. Однако при современной технической вооруженности сплавных предприятий и хорошей устроенности рек этот вид сплава может найти применение на реках с малыми глубинами взамен молевого. Для оценки возможности такого вида сплава кафедрой транспорта леса совместно с объединением "Вятлесосплав" было проведено в навигацию 1984 г. опытное испытание в производственных условиях.

Опытный лесосплав в плоских сплоточных единицах проводился на участке р. Чепца со 132 по 121 км от устья, на котором было намечено три лимитирующих створа, наиболее затруднительных по условиям лесосплава. В выбранных створах осуществлялись все необходимые гидрометрические измерения, в результате чего получены необходимые гидравлические характеристики (табл. 1).

Для проведения натурных исследований было осуществлено обоснование размеров плоских сплоточных единиц, в основу которого были положены следующие условия: технологические возможности сплоточных машин и механизмов, топографические и гидрологические характеристики опытного уча-

Таблица 1. Гидравлические характеристики створов опытного участка

Номер	Место			Хара	ктеристин	си створ	ОВ		
створа	поло- жения, км от устья	шири- на В, м	сред- няя глу- бина h,м	пло- щадь живо- го се- чения ω , м ²	поверх- ностная ско- рость ^V п' м/с	сред- няя ско- рость v,м/с	расход Q,м ³ /с	гидрав- личе- ский радиус R, м	коэффи- циент шерохо- ватости п
1 2 3	129 125 122	132 166 141	1,91 2,34 2,18	253 389 307	1,06 0,73 0,97	0,85 0,58 0,77	215 226 238	1,86 2,28 2,12	0,038 0,069 0,047

стка, а также данные лабораторных исследований. Как показали исследования на модельном русле реки, в технологическом отношении наиболее удачными являются сплоточные единицы с соотношением длины к ширине 1:1 и 2:1, которые и были приняты за основу при изготовлении единиц в натурных условиях. Сплоточные единицы изготавливались из древесины лиственных пород (пиловочник березовый) с хвойным подсплавом в количестве 10...20 % от объема единицы. Всего было изготовлено 30 сплоточных единиц общим объемом 133 м³, из них 10 размером 4х4 м и 20 — 8х4 м. Объем единиц размером 4х4 м находился в пределах 2,31—3,68 м³, осадка — 0,17—0,57 м, а для единиц размером 8х4 м — соответственно 4,09—5,83 м³ и 0,19—0,49 м. Изготовленные единицы причаливались к одному из берегов недалеко от пускового створа и крепились за опоры; на каждой из них был установлен номер, наличие которого позволяло следить за продвижением ее в период лесосплава.

Опытный лесосплав в сплоточных единицах проводился следующим образом: в выбранные створы заранее были доставлены наблюдатели; осуществлялся пуск единиц через определенные интервалы времени; фиксировался номер единицы и время ее прохождения через пусковой створ, расположенный на расстоянии 2 км от первого; наблюдатели, находящиеся в расчетных створах, фиксировали номер единицы и время ее прохождения, а также погодные условия. После пуска всех единиц в сплав они сопровождались на моторной лодке, в процессе чего фиксировались и характеризовались места, где происходила задержка, причины задержки. Затем производились освобождение их и пуск в дальнейший сплав. В течение всего периода проплава измерялась скорость ветра, которая составила в период пуска 3 м/с, а в конце — 9 м/с.

В результате наблюдений было зафиксировано, что конечного створа достигло только 3 единицы, одна из которых имела размеры 4х4 м, а две — 8х4 м. Средняя продолжительность их проплава составила 4 ч 24 м, средняя скорость движения — 2,73 км/ч. Все остальные единицы под действием встречного ветра были прижаты в районе 126 км к кустам ивы у правого берега или отогнаны в затон. Основными причинами задержки единиц в пути явились раздвоение русла, кочки, топляки. Необходимо отметить, что в период проплава на всем протяжении опытного участка отсутствовала обновка лесосплавного хода.

Как показал опыт проплава в плоских сплоточных единицах, на отдельных участках реки даже такие относительно большие скорости течения не всегда обеспечивали продвижение единиц и они под влиянием ветра отклонялись от необходимого направления. Для выявления причин, которые не позволили приплавить единицы в расчетный створ, нами рассматривалось движение сплоточной единицы на прямолинейном участке реки. В этом случае эта единица находится под действием следующих сил: влечения течением; действия ветра; трения, возникающих при соприкосновении ее с берегом или другим препятствием (рис. 1).

Введем следующие обозначения: R — сила влечения течением; M — момент от силы влечения; $R_{\rm g}$ — сила действия ветра; a — угол между направлением движения единицы и направлением ветра; $R_{\rm g}\cos a$ — составляющая силы ветра, действие которой совпадает с направлением движения; $R_{\rm g}\sin a$ — составляющая силы ветра, нормальная к направлению движения; $R_{\rm g}\sin a$ — сила трения единицы о берег; M — момент от силы трения.

Рассмотрим действие всех сил на движение сплоточной единицы. Как известно, скорости течения в реке изменяются как по вертикали, так и по ширине реки, увеличиваясь к оси потока и уменьшаясь к берегам. Неравномерное распределение скоростей, под влиянием которых находится сплоточная единица, создает и неравномерное действие сил, равнодействующая которых R смещена от центра. Такое приложение равнодействующей вызывает момент М, вращающий единицу, и силу, приложенную к центру и перемещающую ее в направлении движения. Этим можно объяснить и разворот единиц в потоке при тихой погоде.

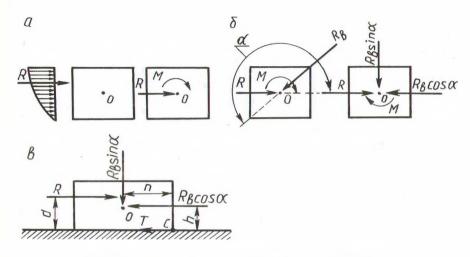


Рис. 1. Схема сил, действующих на сплоточную единицу: а—в — соответственно действие сил течения, течения и ветра и течения, ветра и трения о берег.

Действие ветра указывает на направление силы ветра $R_{\rm B}$ под углом a к направлению движения — и ее можно считать приложенной к центру единицы. Так как ветер имеет различное направление, то и сила будет иметь такое же направление. В общем случае ее можно разложить на две составляющие: одну $R_{\rm B}$ cos a, совпадающую с направлением движения, и другую $R_{\rm B}$ sin a, нормальную к направлению движения. Если принять направление потока за положительное направление, то в зависимости от угла a составляющие силы действия ветра будут изменяться по закону sin a и cos a, принимая или положительное или отрицательное значение.

Под влиянием нормальной составляющей силы ветра сплоточная единица с течением времени может приблизиться к берегу и соприкоснуться с ним, вследствие чего возникает сила трения (на рис. 1 показано возможное действие сил для такого случая). Для того чтобы сплоточная единица могла без постороннего воздействия отплыть от берега, необходимо, чтобы сумма моментов всех сил относительно точки С имела положительное направление, т.е. необходимо соблюдение неравенства

$$Rd > R_{B} (n \sin a + h \cos a).$$
 (1)

Учитывая изложенное, можно сделать вывод о лесосплаве в сплоточных единицах на прямолинейном участке реки. Движение возможно лишь при тихой погоде и в том случае, когда направление скорости симметрично относительно центра тяжести единицы. Изменение направления движения может произойти под влиянием ветра, который в зависимости от угла и силы действия может отклонить единицу в ту или другую сторону от лесосплавного пути, ускорять или замедлять ее движение, а в случае, когда $R_{\rm B}$ cos a>R, то и придать ей движение в обратном направлении, что возможно лишь при относительно больших скоростях ветра. Освобождение сплоточной единицы от берега в случае ее соприкосновения с ним возможно лишь при соблюдении неравенства (1). Что же касается случаев прохождения сплоточной единицей криволинейных участков реки, то здесь к действующим силам добавляется еще центробежная сила, которая стремится вывести ее из состояния прямолинейного движения и прижать к вогнутому берегу, а это в свою очередь усложняет явление движения.

Найдем значение всех сил, действующих на плоскую сплоточную единицу в случае ее движения по прямому участку. Сплоточная единица на стоячей воде без постороннего воздействия перемещаться не может, так как испытывает лишь действие вертикальных сил тяжести и противоположных им сил давления воды. Если же к ней приложить какую-то внешнюю силу (силу тяги, влечения воды, ветра) по направлению, совпадающему с продольной осью, то этим и будет вызвано ее движение. В нашем случае движение осуществляется под действием сил влечения течением и ветром.

Сила влечения течением находится в функциональной зависимости от скорости движения воды, размеров сплоточной единицы и состоит из лобовой, или водоворотной силы влечения (сопротивления формы) и силы влечения от трения воды о смоченную часть ее поверхности (сопротивления трения). Значение этой силы может быть найдено по зависимости для определения сопротивления воды движению плотов [1]:

$$R = (\zeta \otimes + fF) \rho v^2 / 2, \tag{2}$$

где ζ — расчетный коэффициент сопротивления давления, зависящий от отношения B/T (В — ширина, Т — осадка) сплоточной единицы; \mathfrak{A} — погруженная в воду площадь поперечного сечения единицы, \mathfrak{A} = BT; f — коэффициент сопротивления трения, равный 0,009; F — смоченная поверхность единицы, F = L (В + 2T); ρ — плотность воды; ν — скорость движения (в расчетах принимаем равной средней поверхностной скорости движения воды на рассматриваемом участке, в отдельных случаях — на интересующих нас расстояниях от берега).

Величина силы влечения ветром определяется также по аналогии с определением ее для плотов (1):

$$R_{B} = (\xi_{B}(x) + f_{B}F_{B}) \rho_{B} v_{B}^{2}/2,$$
(3)

где ζ_B — коэффициент сопротивления давления ветра, равный 0,13; Ω — площадь поперечного сечения надводной части, Ω_H = B (H—T) (здесь H—средняя высота, равная d_{CD}); f_B — коэффициент сопротивления трения воздуха, рав-

ный 0,02; $F_B = площадь трения, <math>F_B = BL; \rho_B = плотность воздуха, равная 1,225 кг/м³; <math>v = c$ корость ветра относительно сплоточной единицы.

При направлении ветра, совпадающем с направлением движения сплоточной единицы, она способствует увеличению скорости, при противоположном — замедляет ее продвижение, а при направлении под углом происходит смещение сплоточной единицы в ту или другую сторону в зависимости от угла и направления действия.

Для удобства анализа определим значения сил, действующих на единицу, для случая, когда она находится под действием силы влечения течения, силы воздействия ветра и силы трения. Воздействие от ветра примем препятствующим движению, так как на участках, где происходила остановка сплоточных единиц, направление его было под углом к движущейся единице. В основу расчетов приняты параметры потока для второго расчетного створа как наиболее неблагоприятного при проведении опытного лесосплава плоских сплоточных единиц. Расчет произведен для одной единицы размером 8х4 м и одной единицы размером 4х4 м.

При расчетах сплоточной единицы размером 8х4 м средний диаметр бревен принят равным $d_{cp}=0.25$ м, осадка T=0.8 $d_{cp}=0.80.25=0.2$ м; $\mathscr{E}=BT=4.0.2=0.8$ м 2 ; F=L (B+2T)=8(4+2.0.2)=35.2 м 2 ; коэффициент ζ при B/T=4/0.2 равен 1,55.

При определении силы воздействия ветра и ее составляющих на эту же единицу приняты следующие значения, входящие в расчетную зависимость (3): $\zeta_B = 0.13$; $E_B = B (H - T) = B (d_{cp} - T) = 4 (0.25 - 0.20) = 0.2 м²; f_B = 0.02; F_B = B L = 4 8 = 32 м²; <math>\rho_B = 1.225 \ \text{кг/m}^3$; $v = 9 \ \text{m/c}$.

Величина силы трения в случае соприкосновения единицы с берегом определялась по зависимости $T=R_{\rm g}\sin\alpha\mu$ (здесь $\mu-$ коэффициент трения, величина которого принята по [2] и равна 0,45). Для оценки возможности отплытия сплоточных единиц от берега без постороннего воздействия нами определялись также и моменты воздействия от составляющих силы ветра ($R_{\rm g}\sin\alpha$ и $R_{\rm g}\cos\alpha$), а также общий момент от воздействия ветра. Величины плеч п и h приняты для случая, когда сила ветра приложена в центре тяжести сплоточной единицы. Значения расчетных величин для сплоточных единиц 8х4 м и 4х4 м приведены в табл. 2, 3, 4, 5.

Проведенные расчеты показывают, что в случае смещения сплоточной единицы в зону пониженных скоростей и соприкосновения ее с берегом не всегда может быть выполнено неравенство (1), обеспечивающее отплытие единицы от берега самостоятельно, без принудительного воздействия на нее. Так, для сплоточной единицы размером 8x4 м уже с направления ветра $\alpha=40^\circ$ дальнейшее продвижение становится невозможным, так как момент от действия силы влечения течением становится уже меньше, чем момент от силы действия ветра. Что же касается сплоточной единицы 4x4 м, то скорость $v_{\rm B}=9$ м/с не в силах оказать препятствие развороту и отплытию ее от берега. Таким образом, с точки зрения проплава при соблюдении одинаковых условий более пригодными являются сплоточные единицы с соотношением LB = 1x1.

Опыт проведения лесосплава в плоских сплоточных единицах показал, что даже при таких высоких скоростях течения и глубинах без соответствующей подготовки реки не всегда удается осуществить беспрепятственный их

Значения силы влечения течением для

0,/3	0,,0	0,04	0,00		0,40	0,01			-	0,00		
0,10	0,70	0,04	0,00		0,10	0,0				-		
0 73	0.70	0.64	0 58		0 43	0.34 0.43 0.51	0.25		0.14 0.19	0.07		Скорость, м/с
17	16	14	12	10	œ	o	4	ω	2	_	8	Расстояние от берега, м

Значения силы трения и составляющих силы ветра для $LB\cong 8\times 4$ м

Таблица З.

а, град	0	10	20	30	40	50	60	70	80	90
R _B sin α , H	0	5,74	11,30	16,53	21,24	21,24 25,31 28,62	28,62	31,05	32,55	33.05
R _B cos a, H	33,05	32,55	31,05	26,82	25,31	26,82 25,31 21,24 16,53	Ì	11,30 5,74	5,74	0
R _B sin ɗ ռ, H.м	0	22,96	22,96 45,20	66,12	84,96	66,12 84,96 101,24 114,48		124,20 130,20 132,20	130,20	132,20
R _B cos a h. H. M	66,10	65,10 62,10	62,10	53,64	53,64 50,62 42,48	42,48	33,06	22,60	22,60 11,48 0	0
M _B , H·M	66,10	88,06	88,06 107,30	119,76 135,58 143,72 147,54	135,58	143,72		146,80 141,68 132,20	141,68	132,20
Т, н	0	2,58 5,08	5,08	7,44	9,56	9,56 11,39 12,88	12,88	13,97	14,65 14,87	14,87

Значения силы влечения течением для LB = 4 х 4 м

Расстояние от берега, м		-	2	ω	4	6	00	10	12	14	16	17
Скорость, м/с		0,07	0,14	0,19 0,25	0,25	0,34	0,43 0,51		0,58	0,64	,64 0,70	0,73
Сила R, Н	}	3,4	12,7	25,1	25,1 41,8 80,4	80,4	128,6	128,6 180,9	234,0	284,9	340.8	365,6
Момент от воздействия силь М,Н-м	, H-M	9,1	33,8	67,0	111,5	67,0 111,5 214,7	343,4	483,0	624,8	760,7	910,0 976.2	976.2

Значения силы трения и составляющих силы ветра для LB = 4×4 м

Таблица 5.

а, град	0	10	20	30	40	50	60	70	80	90
R _B sin α , H	0	2,98	5,87	8,58	11,04	11,04 13,15	14,87	16,13	16,91	17,17
R _B cos a, H	17,17	16,91	16,91 16,13	14,87		13,15 11,04	8,58	5,87	2,98	0
R _B sin αη, Η⋅м	0	5,96	5,96 11,74	17,16	22,08	17,16 22,08 26,30 29,74	29,74	32,26	33,82 34,34	34,34
R _g cos ah, H.M	34,34	33,82	33,82 32,26	29,74	26,30	29,74 26,30 22,08 17,16	17,16	11,74	5,96	0
M _g , H·M	34,34	39,88	39,88 44,00	46,90	48,38	48,38 48,38	46,90	44,00 39,88	39,88	34,34
Т, Н	0	1,34 2,64	2,64	3,86	4,97	5,96	6,69	7,26	7,61	7,72

проплав. Вопрос о целесообразности его внедрения может быть решен лишь после проведения соответствующих технико-экономических расчетов.

ЛИТЕРАТУРА

1. Инструкция по проектированию лесосплавных предприятий. ВСН 4-78, — Л.: Ротапринт Гипролестранса, 1979. — 293 с. 2. Водный транспорт леса: Справочник. — М.: Гослесбумиздат, 1963. — 561 с.

УДК 625.7 + 539.376

С.С.МАКАРЕВИЧ, канд. техн. наук (БТИ)

К РАСЧЕТУ СЛОИСТЫХ ВЯЗКОУПРУГИХ ДОРОЖНЫХ ОДЕЖД

В работах [1-3] приводятся основы расчета дорожных одежд из вязкоупругих материалов. Но конкретные аналитические выражения, характеризующие напряжения и перемещения, получены только для однородного вязкоупругого полупространства [3, 4] и для двухслойной конструкции [5]. Дорожные конструкции, состоящие из трех и более слоев имеют очень усложненное решение систем дифференциальных и интегральных уравнений. Применение численных методов на основе ЭВМ оказывается в данном случае тоже недостаточно рациональным. Как показано в работе [6], даже в упругой постановке решение этой задачи с помощью ЭВМ не всегда дает удовлетворительные результаты, так как вычислительный процесс длителен и подчас неустойчив. Поэтому в данной работе рассматривается приведение многослойной дорожной конструкции к двухслойной расчетной модели. Так как толщина верхних слоев дорожной одежды невелика по сравнению с подстилающим полупространством, то их можно заменить одним эквивалентным однородным слоем с переменным по высоте модулем упругости Е (рис. 1). Найдем зависимость модуля упругости Е, от модулей упругости слоев. Выделим из дорожной конструкции элемент высотой h, соответствующий толщине всех

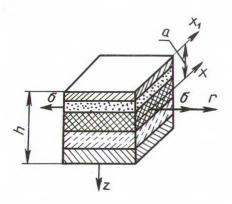


Рис. 1. Расчетная схема слоистой системы.

слоев, лежащих над подстилающим полупространством, и с поперечными размерами, равными единице.

При дальнейших выводах будем полагать, что слои в пачке деформируются согласно наследственной теории Больцмана—Вольтерра. Между ними существует полное сцепление, и они работают совместно без проскальзывания; соблюдается гипотеза плоских сечений (гипотеза Бернулли). Следует отметить, что коэффициенты Пуассона для материалов, применяемых при строительстве дорог, отличаются незначительно, а поэтому стеснением поперечных деформаций можно пренебречь.