ОПРЕДЕЛЕНИЕ КАЧЕСТВА ПРОПИТКИ ДРЕВЕСИНЫ

Древесина имеет капиллярно-пористое анизотропное строение. Проницаемость и проводимость древесины при использовании жидкостей в разных направлениях по отношению к направлению волокон неодинаковая. С целью увеличения срока службы древесины, повышения физико-механических свойств, биостойкости, ее обрабатывали пропиточными составами. В зависимости от свойств пропиточного состава, режимов пропитки, породы древесины можно получить и разное содержание в ней защитных средств, а следовательно, получить отличные по свойствам материалы.

Цель настоящей работы — определение качества пропитки древесины в условиях производства.

Основными показателями качества пропитки являются коэффициент качества пропитки и содержание защитных средств в древесине.

Коэффициент качества пропитки К равен [1]:

$$K = \frac{100v_B}{v\Pi}, \tag{1}$$

где $v_{_B}$ — объем пропиточного состава, находящегося в древесине в пересчете на сухое вещество (защитное средство), м 3 ; $v_{\!\!4}$ — объем древесины, м 3 ; Π — пористость древесины, %.

Здесь

$$\Pi = (1 - \rho/\rho_0) \, 100, \tag{2}$$

где ρ — плотность древесины, кг/м 3 ; ρ_0 = 1530 плотность древесного вещества, кг/м 3 .

В условиях производства объем поглощенного древесиной состава (v_c) определяют по мерному стеклу емкости, в которой происходит пропитка. Зная объем древесины, находящийся в емкости, можно определить расход пропиточного состава, приходящийся на 1 м 3 древесины:

$$v_{np} = v_c/v$$
 или $G_{np} = v_c \rho_c/v$.

Объем защитных средств, находящихся в древесине, будет равен:

$$v_{\rm B} = \frac{x v_{\rm C} \rho_{\rm C}}{100 \rho_{\rm H}},\tag{3}$$

где x — процент сухого остатка пропиточного состава. Для фенолоспиртов (ФС) 30 %-ного содержания x = 30 %; $\rho_{_{\rm H}}$ — плотность защитного средства, кг/м 3 (ФС — $\rho_{_{\rm H}}$ = 1246) ; $\rho_{_{\rm C}}$ — плотность пропиточного состава, кг/м 3 .

Подставляя формулы (3) и (2) в выражение (1), коэффициент качества пропитки получим в следующем виде:

$$K = \frac{15.3 \times \rho_{c} v_{c}}{(1530 - \rho) \rho_{H} v}$$
 (4)

Из выражения (4) следует, что коэффициент качества пропитки зависит от сухого остатка пропиточного состава, объема пропиточного состава, находящегося в 1 $\rm m^3$ древесины, плотности защитного средства. Содержание защитных средств (в %) в 1 $\rm m^3$ древесины равно:

$$K_{n} = \frac{x \rho_{c} v_{c}}{\rho_{H} v}$$
 (5)

Для ФС 30 %-ного содержания $K_n \approx 27 \ v_0/v$. Пользуясь формулой (5) , можно определить и содержание защитных средств в 1 м³ древесины (кг/м³) :

$$G_H = \frac{x v_c \rho_c}{100 v}$$

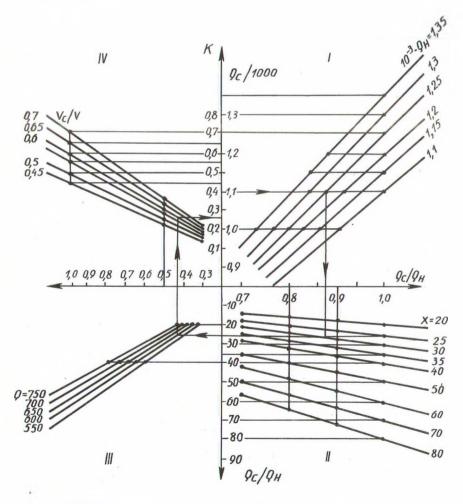


Рис. 1. Номограмма определения коэффициента качества пропитки К.

Для удобства применения формул (4) и (5) в условиях производства и для наглядного представления о влиянии факторов на рис. 1 и рис. 2 дано графическое решение уравнений в виде номограмм.

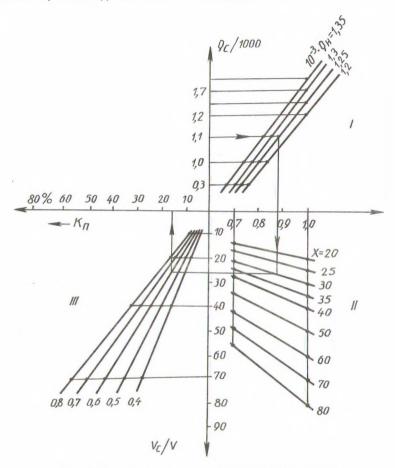


Рис. 2. Номограмма содержания полимера в древесине.

Пример. Пусть требуется определить коэффициент качества пропитки березовых заготовок ФС 30 %-ного содержания (x=30 %). Плотность березы $\rho=600~{\rm kr/m^3}$, плотность состава $\rho_{\rm c}=1110$. В автоклав загружено v = 10 м³ заготовок, количество пропиточного состава, впитавшегося в древесину, составило v = 6 м³. (Определили по мерному стеклу автоклава). Тогда v / v = = 0.6.

По номограмме рис. 1 находим $\rho_{\rm c}/1000$ = 1,1 и проводим горизонталь до пересечения с 10^{-3} $\rho_{\rm H}$ = 1,246. С точки пересечения проводим вертикаль до x = 30. Далее проводим горизонталь до пересечения с лучом ρ = 600. Из полученной точки проводим вертикаль до пересечения с лучом $\nu_{\rm c}/\nu$ = 0,6. На пря-

мой, параллельной оси абсцисс и проходящей через $v_c/v = 0.6$ и K, читаем значение коэффициента качества K = 0.26.

Аналогично можно определить коэффициент качества пропитки в любой момент всего цикла.

Содержание защитных средств в древесине (для данного примера) по номограмме рис. 2 равно 16,5 %.

Используя номограмму рис. 2, можно определить плотность древесины после пропитки и сушки:

$$\rho_{\Pi} = \rho + (K_{\Pi}/100) \rho.$$
 (6)

С помощью номограмм рис. 1 и рис. 2 определяют К, К $_{\Pi}$ при пропитке древесины в два этапа (одним составом, а затем другим). Коэффициент качества К $_{(2)}$ (для второго этапа определяют по данным второго состава, вместо плотности древесины ρ принимают новое ρ_{Π} , полученное по формуле (6) после первой стадии пропитки. Окончательный коэффициент качества пропитки будет равен:

$$K = K_{(1)} + K_{(2)}$$
; $K_n = K_{n(1)} + K_{n(2)}$

Номограммы будут полезны для контроля процесса пропитки древесины во времени, при составлении режимов пропитки. С помощью номограмм в производственных условиях можно получить требуемое содержание защитных средств и коэффициент качества пропитки древесины.

ЛИТЕРАТУРА

1. В и х р о в В.Е., К а р п о в и ч С.И. Теоретический расчет размещения жидкостей и синтетического полимера в древесине. — В кн.: Модификация древесины синтетическими полимерами. Минск, 1973, с. 26—41.

УДК 674.048.3

С.Ю.КАЗАНСКАЯ, канд. техн. наук, Н.В.СКАЧКОВА, М.С.КОЗЛОВСКАЯ, А.В.КОРНИЕНКО (БТИ)

ИССЛЕДОВАНИЕ ВОЗМОЖНОСТИ КОНСЕРВАЦИИ ДЕГРАДИРОВАННОЙ ДРЕВЕСИНЫ ЛИСТВЕННИЦЫ СОСТАВАМИ НА ОСНОВЕ ФЕНОЛОСПИРТОВ

После того как дерево срублено стойкость его к воздействию агентов разрушения продолжает частично сохраняться [1], и натуральную древесину можно рассматривать как природно защищенную. Затем постепенно ее защитные свойства ослабевают и появляется необходимость в искусственной защите от воздействия окружающей среды. И хотя стойкость к биологическим разрушителям лиственницы и сосны (пород, наиболее широко применяемых при