В.М.САЦУРА, канд. техн. наук, Н.Н.ЦЫБУЛЬКО, А.И.МАНДРИКОВА

МОДИФИЦИРОВАННЫЕ СВЯЗУЮЩИЕ ДЛЯ СКЛЕИВАНИЯ ДРЕВЕСНЫХ МАТЕРИАЛОВ

В процессе изготовления древесностружечных плит (ДСтП) склеиваемые частицы древесины подвергаются различным механическим воздействиям, термообработке при сушке и прессовании, в результате чего они способны выделять в окружающую среду различные вещества. При механическом воздействии на древесину происходят так называемые механо-химические изменения составных компонентов древесины. При высоких температурах сушки и прессовании измельченной древесины возможно окисление молекул целлюлозы с выделением формальдегида по схеме

$$H - CHOH - CHOH - R'Q/t \circ C \rightarrow CH_2O\uparrow + R'CHO + H_2O.$$

Кроме того, прессование ДСтП происходит при температуре примерно на 30—50 °С выше предельной температуры отверждения карбамидного связующего. Поэтому отверждение карбамидной смолы происходит в термодинамически невыгодных условиях.

Исходя из сказанного следует, что при разработке и получении нетоксичных клеев на основе мочевиноформальдегидной смолы нельзя не учитывать механо-химическую деструкцию древесины и низкую термостойкость связующего.

Для снижения токсичности и повышения термостойкости клеев на основе мочевиноформальдегидной смолы была проведена модификация карбамидного связующего путем добавки к нему отходов белкового производства и производства сахаров. В обычных условиях (при комнатной температуре) нет полного взаимодействия вышеназванных модификаторов с метилольными группами и свободным формальдегидом смолы.

При повышенной температуре в процессе прессования эти модификаторы играют роль акцептора, который энергично вступает в реакцию с формальдегидом, связывая последний, а также являются химическими реагентами, связывающими метилольные группы.

Количество формальдегида, выделяемого при отверждении связующего, определялось следующим образом.

Из клеевой смеси отбирали навеску 0,3 г и наносили ее ровным слоем (кисточкой) на дно стеклянной конической колбы емкостью 250 мл. Колбу соединяли с обратным холодильником длиной 50 мм, открытый конец которого герметически закрывали пришлифованной пробкой. При нагревании колбы на водяной бане в течение 30 мин клеевая смесь отверждалась. Образующийся при этом формальдегид поглощался водяными парами, выделяющимися в процессе нагревания и отверждения клеевой смеси. Пары, насыщенные формальдегидом, поступали в холодильник, где охлаждались и конденсировались. Затем содержимое колбы охлаждали до комнатной температуры и вы-

Зависимость связывания свободного формальдегида от вида модификатора

Клеевые композиции	Количество свободного формальдегида, мг/л		
Смола КФЖ-68 + 1 % хлористого			
эммония от массы смолы (конт-			
рольная)	0,068		
1	0,059		
2	0,020		
3	0,012		
4	0,053		
5	0,050		
6	0,043		
7	0,038		

держивали при этой температуре еще 30 мин. После этого через открытый конец холодильника сконденсированные пары смывали 50 мл дистиллированной воды. Содержание свободного формальдегида определяли колориметрическим методом. Расчет производили по формуле

$$X = cV_1/V$$
,

где X—содержание формальдегида, мг/л; с—содержание формальдегида, найденное по калибровочной кривой, мг/л; V_1 —объем дистиллята; мл; V—объем первоначальной пробы, взятой для анализа, мл.

Количество свободного формальдегида, выделяемого при отверждении клея, в зависимости от его вида приведено в табл. 1.

Кроме изучения влияния вышеназванных модификаторов на степень связывания свободного формальдегида, исследовалось их влияние на термостабильность, время отверждения и жизнеспособности связующего, физикомеханические свойства древесных материалов, склеиваемых на его основе (табл. 2).

Физико-механические свойства древесных материалов (ДСтП и фанеры), склеенных на основе предлагаемых связующих, приведены в табл. 3. ДСтП прессовались трехслойными толщиной 16 мм, расчетной плотностью 650 кг/м³, при температуре 175 °С, удельном давлении 2 МПа и выдержке 0,4 мин/мм толщины. Влажность древесных частиц составляла 5 %. Прессование и испытание фанеры проводились по ГОСТ 14231—78 и ГОСТ 9624—72.

Следует также отметить, что предложенные клеевые композиции имели время отверждения при температуре 100 °C 38–57 с, жизнеспособность при комнатной температуре — 25–36 ч.

Из вышеизложенного следует, что модификация карбамидного связующего предложенными модификаторами ведет к снижению его токсичности. Количество свободного формальдегида, выделяемого при отверждении модифицированного связующего, в 1,2—5,7 раза меньше, чем при отверждении немодифицированного. Термостойкость разработанных клеевых компози-

Клеевые композиции	Температура, ^О С	Время выдержки при данной тем- Состояние образцо пературе, мин		
Смола КФЖ-68 + 1 % хлористого				
аммония от массы смолы (конт-				
рольная)	180	15	Увеличился в 2 раза	
	190	30	Разрушился	
Композиция 1	180	120	Не изменился	
	190	120	и изменился	
	200	120	**	
	220	120	"	
2	180	120	,,	
	190	120	"	
	200	120	.,	
	220	120	**	
3	180	120		
	190	120	,,	
	200	120	**	
	220	120	"	
4	180	120	**	
	190	120	**	
	200	120	"	
	220	120	17	
5	180	120	"	
	190	120	"	
	200	120	"	
	220	120	"	
	240	120	Незначительно увели-	
" 6			чился	
" 6	180	120	Не изменился	
	190	120	**	
	200	120		
	220	120	**	
	240		Незначительно увели- чился	
7	180		не изменился	
	190	120	не изменился	
	200	120	"	
	220	120	"	
	240	120	 Незначительно увели- чился	

ций значительно превосходит термостойкость традиционной композиции. Даже в процессе выдержки в течение 120 мин при температуре 220 °С образцы связующего не изменялись. Древесные материалы, склеенные на основе предложенных композиций, отличаются высокими физико-механическими показателями.

Таким образом, результаты экспериментальных данных говорят о целесообразности использования связующих модифицированных отходами белкового производства и производства сахаров, в изготовлении различных клеевых материалов, в частности фанеры и древесностружечных плит.

		Физико-механические свойства						
Клеевые компо	про ти (едел предел ринос- прочнос- при из- ти при ве ДСтП,растя- а жении 1 пласти плиты, МПа	водопог- лощение за 24 ч, %	разбуха- ние плит по тол- щине за 24 ч, %	предел прочнос- ти при скалы- вании фанеры, МПа (сухие образ- цы)	предел прочнос- ти при скалы- вании фанеры, МПа (мокрые образ- цы)		
Смола КФЖ-68								
+ 1 % хлористог								
аммония от мас смолы (контро:								
ная)	13,39	9 0,38	78	21	1,5	1,4		
Композиция 1	15,2		66	20	2,2	1,9		
" 2	15,73	3 0,43	67	19	2,3	2,0		
" 3	15,42	2 0,41	67	19	2,1	1,8		
4	15,88	3 0,51	73	19	1,8	1,7		
" 5	15,21		71	18	1,9	1,8		
" 6	17,0	0,48	68	18	2,2	1,9		

ЛИТЕРАТУРА

1. Шварцман Г.М., Темкина Р.З., Свиткин М.З. К вопросу об уменьшении выделения формальдегида из древесностружечных плит. — Деревообрабатывающая пром-сть, 1972, № 5, с. 3—5. 2. Кондратьев В.П., Анохин А.Е., Боков А.Н. О токсичности клеевых материалов. — Деревообрабатывающая пром-сть, 1978, № 10, с. 6, 7. 3. Эльберт А.А., Коврижных Л.П. Модификация фенолформальдегидных смол для древесностружечных плит. — Деревообрабатывающая пром-сть, 1979, № 7, с. 3, 4.

УДК 674.093:338

Е.Е.СЕРГЕЕВ, В.И.ПАСТУШЕНИ, канд. техн. наук, Л.А.ЗАЙЦЕВА

О ПЕРЕРАБОТКЕ ТОНКОМЕРНОГО СЫРЬЯ НА ДЕТАЛИ ТАРЫ

В последние годы в связи с истощением лесосырьевых ресурсов в Европейской части страны на лесопильно-деревообрабатывающие предприятия Белорусской ССР наряду с пиловочником поступает значительное количество тонкомерной древесины. Кроме того, часть тонкомерных бревен образуется в процессе раскряжевки хлыстов на нижних складах непосредственно на территории предприятий.