Зависимость физико-механических свойств ДСтП от вида модификатора

		Физико-механические свойства							
Клеевые композиции		предел прочности при изгибе ДСтГ МПа		водопог- лощение за 24 ч, %	разбуха- ние плит по тол- щине за 24 ч, %	предел прочнос- ти при скалы- вании фанеры, МПа (сухие образ- цы)	предел прочнос- ти при скалы- вании фанеры, МПа (мокрые образ- цы)		
Смола КФЖ-68	+								
+ 1 % хлористог									
аммония от мас									
смолы (контро: ная)		3,39 (0,38	78	21	1,5	1,4		
пан <i>)</i> Композиция 1),48	66	20	2,2	1,9		
" 2		,	0,43	67	19	2,3	2,0		
" 3			0,41	67	19	2,1	1,8		
4	1	5,88	0,51	73	19	1,8	1,7		
" 5	1	5,21	0,47	71	18	1,9	1,8		
" 6		7,0	0,48	68	18	2,2	1,9		

ЛИТЕРАТУРА

1. Шварцман Г.М., Темкина Р.З., Свиткин М.З. К вопросу об уменьшении выделения формальдегида из древесностружечных плит. — Деревообрабатывающая пром-сть, 1972, № 5, с. 3—5. 2. Кондратьев В.П., Анохин А.Е., Боков А.Н. О токсичности клеевых материалов. — Деревообрабатывающая пром-сть, 1978, № 10, с. 6, 7. 3. Эльберт А.А., Коврижных Л.П. Модификация фенолформальдегидных смол для древесностружечных плит. — Деревообрабатывающая пром-сть, 1979, № 7, с. 3, 4.

УДК 674.093:338

Е.Е.СЕРГЕЕВ, В.И.ПАСТУШЕНИ, канд. техн. наук, Л.А.ЗАЙЦЕВА

О ПЕРЕРАБОТКЕ ТОНКОМЕРНОГО СЫРЬЯ НА ДЕТАЛИ ТАРЫ

В последние годы в связи с истощением лесосырьевых ресурсов в Европейской части страны на лесопильно-деревообрабатывающие предприятия Белорусской ССР наряду с пиловочником поступает значительное количество тонкомерной древесины. Кроме того, часть тонкомерных бревен образуется в процессе раскряжевки хлыстов на нижних складах непосредственно на территории предприятий.

Проведенные исследования показали, что в сырьевом балансе предприятий тонкомерные лесоматериалы (диаметром до 13 см) составляют более 10 %. Учитывая это рациональное и полное использование тонкомерного сырья на мелкую пиленую продукцию различного назначения и качества позволяет не только улучшить технико-экономические показатели работы лесопильно-деревообрабатывающих предприятий, но и расширить их лесосырьевую базу.

Анализ показывает, что направление переработки тонкомерной древесины оказывает существенное влияние как на полезное использование сырья, так и на экономические показатели его переработки.

Для установления экономической эффективности и целесообразности комплексной переработки тонкомерных бревен хвойных пород на детали тары и технологическую щепу, выявления влияния диаметра на выход деталей тары, а также взаимосвязи между фактическим и расчетными выходами пиленой продукции были проведены исследования в производственных условиях объединения "Речицадрев". Раскрой тонкомерных бревен производился в следующей технологической последовательности:

- выпиловка двухкантного бруса на фрезерно-брусующей машине;
- раскрой бруса по длине на кратные заготовки;
- продольный раскрой заготовок на многопильном станке;
- торцовка дощечек на многопильном концеравнителе.
- браковка, упаковка и учет пакетов тары.

Выход деталей тары и технологической щепы, отношение фактического выхода пиленой продукции к расчетному и экономические показатели переработки тонкомерных бревен в зависимости от диаметра приведены в табл. 1.

Таблица 1. Эффективность переработки

Диа- метр бре-	Выход продукции, %			Расчетн ый	Отношение	Экономиче-
	Всего	вто	м числе	— выход де- талей та-	фактиче- ского вы- хода де- талей тары к расчетно- му	ская эффек тивность
вен, см 		детали тары	технологи- ческая щепа	- ры, %		переработ- ки сырья, руб/м ³
10	84,02	38,02	46,0	35,25	1,08	10,43
11	85,36	36,36	49,0	38,74	0,94	13,47 9,15 12,38
12	84,62	32,62	52,0	36,80	0,89	6,27 9,70
13	84,60	30,60	54,0	34,78	0,88	4,71 8,27

П р и м е ч а н и е. В числителе показана экономическая эффективность при целевой переработке тонкомера на детали тары, в знаменателе — при комплексной переработке на детали тары и технологическую щепу.

Экономическая эффективность переработки 1 м³ тонкомерных лесоматериалов определялась как разность между стоимостным выходом полученной продукции и стоимостью единицы сырья с затратами на его переработку.

Из приведенных данных в табл. 1 видно, что с увеличением диаметра выход пиленой продукции (при принятом значении толщины бруса) снижается, а технологической щепы увеличивается. Комплексное использование древесины во всех случаях сравнительно высокое, колеблется в пределах 84,02 — 85,36 %.

Установленная взаимосвязь (отношение) между фактическим и расчетным выходом деталей тары может быть положена в основу расчета нормативных выходов пиленой продукции. Для обеспечения наибольшего выхода пиленой продукции следует предусматривать подсортировку сырья по диаметрам и вести их раскрой по схемам (поставам), предусматривающим получение брусьев оптимальных размеров.

Сравнительно высокие экономические показатели достигаются при комплексной переработке тонкомерных бревен на детали тары и технологическую щелу $(8.27-13.47 \text{ руб. на 1 м}^3 \text{ перерабатываемого сырья})$.

Выводы

- 1. Основным направлением повышения эффективности использования тонкомерной древесины хвойных пород является комплексная его переработка на пиленую продукцию и технологическую щепу. При этом комплексное использование тонкомерных лесоматериалов улучшает структуру вырабатываемой продукции.
- 2. Полученные данные выхода пиленой продукции могут быть использованы для планирования норм расхода сырья на единицу продукции в зависимости от диаметра.
- 3. Выявленная взаимосвязь указывает на необходимость планирования оптимальных условий раскроя тонкомерной древесины, обеспечивающих наибольший расчетный, а следовательно, и наибольший фактический выход пиленой продукции.

УДК 674.048

Г.М.ШУТОВ, д-р техн. наук, Г.С.БЫЛИНА, Г.Д.ЛЕГЧИЛОВА (БТИ)

ВЛИЯНИЕ ЕДКОГО НАТРА НА ВЯЗКОСТЬ ФЕНОЛОСПИРТОВ

Фенолоспирты (ФС) получили широкое применение при термохимическом способе модифицирования древесины [1—3]. Это вызывает необходимость более детального исследования их химических и физико-химических свойств, их поведения при смешении с другими реагентами, добавляемыми в пропиточные составы.

ФС представляют собой смесь мономеров — салигенина, 4-оксибензилового спирта и их олигомеров различной степени поликонденсации.

При хранении товарных ФС и пропиточных составов на их основе происходит дальнейшая поликонденсация мономеров и олигомеров с образованием