крытия перед нанесением нового межслойная адгезия повышается, но незначительно.

Таким образом, оптимальными структурами лакокрасочных покрытий, сформированных из слоев разных групп и марок лаков при ремонте мебели, являются НЦ-218 + "Пуроляйт"; НЦ-243 + "Пуроляйт"; ПЭ-246 + ПЭ-232; ПЭ-246 + "Пуроляйт";

Допустимые структуры лакокрасочных покрытий разных групп и марок: НЦ-218 + ПЭ-232; НЦ-218 + ПЭ-265; ПЭ-246 + ПЭ-265; ПЭ-246 + НЦ-218; ПЭ-246 + НЦ-243; ПЭ-265 + НЦ-218; ПЭ-265 + НЦ-243; МЛ-2111 + "Пуроляйт"; МЛ-2111 + ПЭ-232.

На матовые лаки (НЦ-243, "Пуроляйт", МЛ-2111) нецелесообразно наносить глянцевые (НЦ-218, ПЭ-232, ПЭ-246, ПЭ-265), так как создается мутная, некрасивая поверхность.

ПИТЕРАТУРА

1. Басин В.Е. Адгезионная прочность. — М.: Химия, 1981. — 208 с. 2. 3 отов А.А. О факторах, влияющих на адгезию лакокрасочных покрытий к древесине // Сб. науч. тр./ МЛТИ. — 1980. — Вып. 117: Технология и материалы деревообрабатывающих производств. — С. 101—107.

УДК 674.048

А.В. ДОРОЖКО, С.С. МАКАРЕВИЧ, Ю.В. ВИХРОВ

ПРОГНОЗИРОВАНИЕ УПРУГИХ СВОЙСТВ ДРЕВЕСИНЫ, МОДИФИЦИРОВАННОЙ ПОЛИМЕРАМИ, ПРОНИКАЮЩИМИ В КЛЕТОЧНЫЕ СТЕНКИ

В работе [1] предложена модель натуральной древесины в виде армированной сотовой конструкции, выполненной из трансверсально-изотропного материала. При помощи этой модели можно учесть особенности анатомического строения древесины на трех структурных уровнях. Получена система уравнений, связывающая модули упругости и коэффициенты Пуассона древесины с упругими постоянными материала модели и ее структурными параметрами. На базе модели натуральной древесины разработана модель модифицированной древесины.

В данной работе приведены результаты расчетов по разработанным моделям. Путем исследований, проведенных с применением ЭВМ, установлено минимальное количество подлежащих определению упругих и структурных параметров модели, обеспечивающее равенство упругих свойств модели и моделируемой древесины. Таких параметров оказалось одиннадцать:

 E_1 , E_2 — модули упругости материала модели соответственно в собственном продольном и в собственном поперечном структурных направлениях;

 $\mu_{12}, \, \mu_{21}, \, \mu_{22} \, - \,$ коэффициенты Пуассона материала модели;

 K_2 — коэффициент относительной жесткости слоя-аналога механических тканей древесины в поперечном направлении ($K_2 = E_t^{\,(1)}/\,E_r^{\,(1)}$) ;

 K_3 — коэффициент жесткости слоя-аналога сердцевинного луча в аксиальном и тангенциальном направлениях ($K_3 = E_a^{(\parallel)} / E_2 = E_t^{(\parallel)} / E_2$);

 K_4 — коэффициент жесткости слоя-аналога сердцевинного луча в радиальном направлении ($K_4 = E_s^{(11)}/E_s$) ;

 η_2 , η_1 — парциальный объем слоев-аналогов соответственно сердцевинных лучей и механических тканей;

 $K_{_{5}}$ — отношение плотностей слоев-аналогов сердцевинного луча и механических тканей древесины ($K_{_{5}}=\rho_{_{11}}/\,\rho_{_{1}}$) .

Задача определения указанных параметров модели была сведена к минимизации функции

$$F = (E_1 \mu_{21} - E_2 \mu_{12})^2 \rightarrow \min$$
,

записанной для материала модели. При этом в качестве ограничений использовали абсолютную величину разности упругих постоянных древесины, рассчитанных по модели и определенных экспериментально, т.е.

$$\Phi_{j} = \left| \begin{array}{c} R_{j}(x_{j}) \\ R^{**} \end{array} \right| - 1 = 0,$$

где $R_j(x)$ — величина упругой характеристики древесины, рассчитанная по модели через ее параметры x_i ; R_j^* — экспериментально определенная упругая характеристика древесины.

Для решения системы уравнений, связывающих упругие характеристики древесины с параметрами модели, использовали программу LPNLP [2]. Программа реализует модифицированный метод Лагранжа. В результате получены параметры моделей древесины березы ($E_1=55\ 150\ \mathrm{MПa}$; $E_2=10\ 768\ \mathrm{MПa}$; $\mu_{12}=0,4010$; $\mu_{21}=0,0291$; $\mu_{22}=0,7747$; $K_2=1,3462$; $K_3=0,0061$; $K_4=0,0049$; $\eta_1=0,8883$; $\eta_2=0,1062$; $K_5=1,718$) и ольхи ($E_1=43\ 319\ \mathrm{MПa}$; $E_2=11\ 132\ \mathrm{MПa}$; $\mu_{12}=0,5238$; $\mu_{21}=0,0405$; $\mu_{22}=0,2889$; $K_2=1,3287$; $K_3=0,0594$; $K_4=0,0498$; $\eta_1=0,4797$; $\eta_2=0,4642$; $K_5=0,3042$).

Следует отметить, что у древесины, модифицированной полимерами, проникающими в клеточную стенку, структура остается такой же, как и у натуральной древесины. Кроме того, модифицирование приводит в основном к одинаковым изменениям субмикроструктуры стенок всех видов клеток, слагающих древесину, поэтому можно допустить, что и структурные параметры останутся неизменными. Для дальнейших исследований удобно привести упругие постоянные материала модели модифицированной древесины к структурным параметрам натуральной древесины, которые уже известны.

Подставив в систему уравнений (14), приведенных в работе [1], значения экспериментально определенных упругих постоянных модифицированной древесины и структурных параметров натуральной древесины, найдем приведен-

Таблица 1. Приведенные упругие постоянные материала модели древесины, модифицированной фенолоспиртами

s	${E_1}^*$, M Π a	Е ₂ * МПа	μ_{12}^*	μ_{21}^*	μ_{22}^{*}
		Модель древе	есины березы		
0	55 150	10 768	0,4010	0,0291	0,7747
0,140	58 808	15 901	0,4113	0,0395	0,7746
0,286	59 617	18 151	0,4405	0,0443	0,7560
0,514	60 462	22 122	0,4595	0,0542	0,7580
0,763	59 244	26 665	0,4690	0,0711	0,7521
		Модель древ	есины ольхи		
0	43 319	11 132	0,5238	0,0405	0,2889
0,252	44 135	16 510	0,5272	0,0471	0,4937
0,514	47 238	23 286	0,5134	0,0551	0,6000
0,929	51 791	28 380	0,4925	0,0645	0,6421
1,370	59 146	40 807	0,4641	0,0974	0,6210

ные упругие характеристики материала модели модифицированной древесины.

В табл. 1 даны приведенные упругие постоянные модифицированной древесины при различных значениях параметра s, показывающего отношение объема полимера, поглощенного клеточной стенкой, к объему материала стенки до модифицирования. Параметр s может быть выражен через плотность исходной древесины ρ и массовую концентрацию раствора k (в долях):

$$s = \frac{1}{1 + \frac{\rho_{H}}{k} - \rho_{H}} \left(\frac{\rho_{0}}{\rho} - 1 + 0.3 \rho_{0} \right),$$

где $\rho_{_{
m H}}$ — плотность полимера; $\, \rho_{_{
m O}}$ — плотность древесинного вещества.

Используя полученные результаты, переходим к прогнозированию свойств модифицированной древесины. Известно, что свойства древесины, особенно для одной породы, зависят в основном от ее плотности, что нашло отражение в предлагаемой структурно-механической модели. Однако в уравнениях, описывающих модель, связь между плотностью и жесткостью в явном виде имеет место только для структуры-аналога механических тканей древесины. Для того чтобы учесть изменения жесткости структуры-аналога запасающих тканей древесины от плотности, в модель необходимо внести соответствующую поправку. Допустим, коэффициенты жесткости запасающих тканей, т.е. сердцевинных лучей, прямо пропорциональны плотности древесины. Тогда для древесины с любой плотностью

$$K_{3}' = \frac{K_{3}\rho}{\rho^{*}} ; K_{4}' = \frac{K_{4}\rho}{\rho^{*}} ;$$

$$E_a^{(||)} = E_1^{(||)} = E_2 K_3'$$
; $E_r^{(||)} = E_1 K_4'$,

где ho^* — плотность древесины, для которой определены значения $K_{_3}$ и $K_{_4}$.

По уравнениям, описывающим модель, можно рассчитать упругие постоянные для древесины с любой плотностью. Чтобы определить упругие характеристики модифицированной древесины, необходимо располагать сведениями об изменении приведенных упругих постоянных материала модели в зависимости от степени наполнения полимером s. С этой целью свяжем приведенные упругие постоянные E_j^* , μ_{jj}^* с параметром s регрессионными уравнениями

$$E_{i}^{*}, \mu_{ij}^{*} = a_{0} + a_{1}s + a_{2}s^{2} + a_{3}s^{3}, \tag{1}$$

где a_0 , a_1 , a_2 , a_3 — коэффициенты регрессии.

В качестве исходной выборки данных используем табл. 1.

Значения коэффициентов регрессии, рассчитанные на ЭВМ EC-1033 с применением программ EREFF, реализующих метод Ефроимсона [3], приведены в табл. 2.

Таким образом, зная плотность натуральной древесины ρ и концентрацию пропиточного раствора k, можно найти степень заполнения \S , а по уравнению (1) — приведенные упругие постоянные материала модели E_i , μ_{ij}^* . Затем, подставляя в систему уравнений, описывающих модель, значения плотности натуральной древесины и рассчитанные приведенные упругие постоянные материала модели, можно определить упругие характеристики модифицированной древесины.

В целях упрощения расчетов при практическом использовании предлагаемой методики уравнения, описывающие модель, можно заменить регрессионными зависимостями, включающими два независимых параметра k и ρ . Исход-

Таблица 2. Коэффициенты уравнения регрессии приведенных упругих постоянных E_i^* , μ_{ii}^*

Параметры		Бе	реза			Ольха		
	a ₀	a 1	a ₂	a ₃	a ₀	a ₁	a 2	a ₃
E ₁ *, ΜΠα	55270	28961	-50267	25153	43196	3583	7228	-9963
Е ₂ *, МПа	10894	40058	-58455	43412	10826	32625 -	-27742	14493
μ_{12}^{*}	0,3996	0,1013	0,1443	-0,2078	0,5245	0,0216	-0,0906	0,031
μ_{21}^{*}	0,0293	0,0830	-0,1336	0,1270	0,0401	0,0441	0,0540	0,0382
μ_{22}^*	0,7768	-0,0437	-0,0262	0,0549	0,2894	1,0270	-0,9619	0,283

Таблица 3. Коэффициенты регрессионного уриштеля древесиона березы

											910		812	
<i>E</i> _{a′} M⊓a	797,3	32320	24800	-13910	30390	458800	0	-20940	22960	2635000	39892	-6626000	-30720	5728000
μ_{ar}	0,06217	0,6485	1,116	0	-1,363	-1,249	-0,9653	0,3067	1,447	0	0,6464	0	0	0
μ_{at}	0,7611	-0,8579	0,3898	0,5971	0,7862	-11,46	0	-0,7715	0,7220	76,36	0	-202,2	68690'0-	178,9
E, M⊓a	297,4	-1445	-1351	3532	7127	-1418	1083	3816	-13380	11620	0	0	-538,3	0
μ	0,963	0	0	-1,139	0,2746	-0,2525	0,3381	-0,3357	0,3949	0	0	-0,1291	0,1701	0
H _{ra}	0,02974	0	0,2962	0	-0,4845	0	0	0,3293	-0,3411	-0,3942	0	3,135	-0,00218	-3,441
£, M⊓a	3,277	0	-806,3	1534	6812	0	0	-1244	-7404	-7688	0	46600	-385,6	-43860
r.	0,9453	-0,6315	-0,8552	-1,870	-1,559	-0,7546	3,097	0,8912	-0,2270	0	-1,413	7,639	0	-10,15
μ_{ta}	0,06536	-0,1055	0,1876	-0,07696	-0,2552	-0,7817	0,2217	0,1555	-0,09204	4,612	0	-10,89	-0,1038	9,057

Таблица 4. Козффициенты регрессионного уравнения для древесины ольхи

	Ea' M⊓a	μ_{ar}	μ_{at}	Er Mila	Hr	h _{ra}	E t JVII I B	H _{tr}	r ta
a ₀	868	-0,01007	0,5342	82,18	0,8972	0,04535	-208,6	0,8042	0,1651
	19080	1,176	0	-322,1	-0,8059	0	1376	-1,287	-0,4451
	-4643	1,297	0	-1686	0,6905	0,4357	-994,5	2,348	0,1301
<i>w</i>	0	-0,8558	-2,074	6362	0	0	0	0	0,3651
a 4	4309	-2,378	3,350	12980	0	1,361	8692	-4,395	0
8 2	0	0	-2,574	-1617	-2,774	0	1181	-2,903	0,3079
a ₆	0	0	2,346	0	0	0,05696	0	0	0
87	-65100	1,722	-4,298	6221	-0,5947	1,592	0	1,408	0,1652
82	82200	0,6559	3,267	-18820	2,576	-1,264	-6496	3,929	-0,8119
60	-218700	-17,92	0	12900	1,021	1,250	0	0,6446	0
a ₁₀	22200	0	0	0	0	0	0	0	0
11	436500	60,26	0	0	0	0	0	0	0
12	-23700	0	0	0	0	-0,1727	0	1,105	0
	-356000	-58,13	0,9215	0	0	-0,9383	5894	0	0,5159

пыми данными для регрессионного анализа явились упругие характеристики модифицированной древесины, полученные при разных плотностях исходной кривесины ρ и различной концентрации фенолоспиртов в пропиточном раствоны k. Для определения упругих характеристик модифицированной древесины используем следующие регрессионные уравнения:

$$E_{i}, \mu_{ij} = a_{0}' + a_{1}\rho + a_{2}k + a_{3}\rho^{2} + a_{4}\rho k + a_{5}k^{2} + a_{6}\rho^{3} + a_{7}\rho^{2}k + a_{8}\rho k^{2} + a_{9}k^{3} + a_{10}\rho^{4} + a_{11}k^{4} + a_{12}\rho^{5} + a_{13}k^{5};$$

$$i, j = (a, r, t).$$
(2)

Регрессионные коэффициенты a_n , входящие в уравнение (2), вычислены звм по методу Ефроимсона с применением программы EREFF (табл. 3,4).

Упругие постоянные натуральной древесины при различных плотностях ρ можно найти из уравнения (2) при k=0.

Для проверки полученных расчетных зависимостей были использованы пытные значения упругих характеристик натуральной и модифицированной древесины [4]. Отклонения между экспериментальными и теоретическими начениями не превысили 10 %. Учитывая природную изменчивость механических свойств древесины, полученный результат можно считать удовлетволительным.

ПИТЕРАТУРА

1. Дорожко А.В., Макаревич С.С., Вихров Ю.В. О моделях древесины натуральной и модифицированной полимерами, проникающими в клеточные стенки (в данной книге). — С. 65—72. 2. Ріетте D.A., Lowe M.J. Mathematical programming via augmented Lagrangians. — Reading, Mass.: Addison-Wesley. — 1975. — Р. 326. 3. Е froym-1 on M.A. Multiple regression analysis, mathematical methods for Digital Computer / Ed. A Ralston, Wiley. — New York, 1960. — Р. 124. 4. Дорожко А.В., Макаревич С.С. Упругие свойства модифицированной древесины при растяжении // Механическая техновогия древесины. — Минск: Выш. шк., 1983. — Вып. 13. — С. 64—66.

УДК 674.048.5:539.37

А.В. ДОРОЖКО, С.С. МАКАРЕВИЧ, Ю.В. ВИХРОВ

О МОДЕЛЯХ ДРЕВЕСИНЫ НАТУРАЛЬНОЙ И МОДИФИЦИРОВАННОЙ ПОЛИМЕРАМИ, ПРОНИКАЮЩИМИ В КЛЕТОЧНЫЕ СТЕНКИ

Для прогнозирования упругих свойств модифицированной древесины необходимо знать свойства структурных элементов натуральной древесины. Непосредственно определять механические характеристики клеточной стенки древесины пока невозможно из-за технических трудностей. Гораздо легче изучить эффект модифицирования клеточной стенки древесины на идеализиронанной модели строения древесины. Ранее предложенные модели учитывают строение древесины только на одном или двух структурных уровнях. Кроме