
Экспериментальное определение коэффициентов заключается в следую­
щем. Образец толщиной 6 вставляется в патрон установки и зажимается. Созда­
ется давление Р на жидкость, которая фильтруется через образец. Давление 
на выходе из образца принимается равным атмосферному (Р2 = P j  . Объем ­
ный поток жидкости определяем через образец при данном перепаде давле­
ния (измеряется объем и время фильтрации жидкости). Удельный массовый 
поток жидкости находим по формуле

qm = р А  V / S A  т ,
где S  — площадь образца, через которую фильтруется жидкость; V — объем 
жидкости,протекающей за время Ат .

Определяется qm в течение всего процесса фильтрации.
По результатам измерений была проведена соответствующая статистиче­

ская обработка (табл. 1) .
Анализ данных табл. 1 свидетельствует о том, что среднее значение коэф ­

фициента проницаемости древесины ольхи и березы составом на основе 
МФПС-2 соответственно в 2,0 и 3,7 раза выше, чем для состава на основе лака 
ПЭ-232.

Значения коэффициента проницаемости составом на основе лака ПЭ-232 
для березы и ольхи перекрываются в пределах доверительного интервала 
К  — А К  <  К  + АК  . Это свидетельствует об отсутствии значимого различия 
между коэффициентами проницаемости древесины ольхи и березы составом 
на основе лака ПЭ-232.

Коэффициент поверхностного сопротивления £ при исследовании проница­
емости древесины березы и ольхи пропиточными составами на основе моче- 
виноформальдегидной и полиэфирной смол изменяется в значительных преде­
лах и с учетом доверительного интервала одинаково для данных пород и со­
ставов. Максимальное значение, указанное в табл. 1, свидетельствует, что для 
березы данный параметр в 4—5 раз больше, чем для ольхи.
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ПРИМЕНЕНИЕ СПЛАЙНОВ В МАТЕМАТИЧЕСКИХ МОДЕЛЯХ 
ХЛЫСТОВ И БРЕВЕН

Важным инструментом в исследовании технологических процессов обра­
батывающих отраслей промышленности являются модели сырья. В лесопиле­
нии эту роль играют модели хлыстов и бревен. Математические модели могут
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быть реализованы при помощи различного математического аппарата. Так, 
известны аналитические модели хлыстов и бревен при описании объектов, на­
пример уравнениями цилиндра, параболоида вращения второй степени или усе­
ченного конуса [ 1 ]. Однако в ряде случаев аналитические модели бывают 
неудовлетворительны, поскольку они не могут учесть недетерминированность 
формы ствола, вызванную биологической природой древостоев. Привлечения 
для этих целей концептуальных лесоводственных представлений о форме 
ствола и таксационных моделей недостаточно из-за того, что, когда хлыст или 
бревно доставлены на деревообрабатывающее предприятие для переработки, 
информацию об условиях роста древостоя нельзя восстановить. Поэтому та­
кой подход, вполне приемлемый для моделирования, например, размерно­
качественных характеристик древостоев в таксационных выделах, непригоден 
для построения адекватных моделей сырья в лесопилении.

Альтернативный путь может быть представлен численными моделями, 
позволяющими учесть индивидуальные особенности объектов лесопиления на 
основе индивидуальной диагностики. Нами предложено построение математи­
ческих моделей хлыстов и бревен на основе сплайн-функций. По сравнению с 
другими математическими конструкциями, которые используются для описа­
ния геометрических тел сложной формы, сплайны обладают рядом существен­
ных преимуществ. Это прежде всего лучшие аппроксимативные свойства и 
простота реализации на ЭВМ. Появившись в явном виде около сорока лет на­
зад, сплайны нашли широкое применение при моделировании геометрических 
объектов в машиностроении (авиа- и судостроение, производство турбин, ку­
зовов легковых автомобилей и д р .), архитектуре, системах машинной графи­
ки и обработки изображений.

Наиболее употребительны в приложениях полиномиальные кубические 
сплайны. Нами использованы интерполяционные кубические сплайны дефекта 
1, определяемые следующим образом [2 ] . Пусть на отрезке [а, Ь] в узлах 
а = х j < х 2 <  ... <Хд, =  Ъ заданы некоторые конечные вещественные значения 
У/ — f (X j ) , і =  1, N  . Если они йолучены из очень точных наблюдений либо 
определены с помощью некоторой достаточно гладкой функции /  , то естест­
венным методом аппроксимации таких данных является интерполяция. Обо­
значим через С2[а, b ] множество дважды непрерывно дифференцируемых на 
[а, Ь] функций. Интерполяционным кубическим сплайном дефекта 1 называ­
ется функция

Перейдем к  построению сплайна (1). Очевидно, ввиду линейности S"(x) на

S (х) =5 .(х) =  2  а().(х -  х.У 1 , / =  1, N - 1, /  =  1 ,4  , ( 1)
удовлетворяющая следующим условиям:

5(х)Є С2 [а, b ] ,

5(хг) = у ,, i = T J f .

( 2)

( 3)

(*  -  * ,)  , (4)
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hi -  x i+1 -  хі ’ і -  l ’N -  U

Используя формулу Тейлора с остаточным членом в интегральной форме, 
представим производную полинома S-(x) на [х,- , х-+ j ] в виде

S,'(x) =  S'iX')  + f  S'; (x )d x  ,
1 x.I

и, учитывая уравнение (4) ,

S ;'(x )=  .S'(x,) + S fo -X * -  x,) +
5 " Ц +1) - s ! ' ( x . )

2 h t
( x - X j ) 2 . (5)

Аналогично

S;(x) =S,.(xl.) + fS '(x )dx  =  Sf(xf) + S f a X x  -  x.) +

(x -  x })2 +
S f r b x )  ~ S ' ! ^

6*i
(x -  x,.)3 .

Из условия (2) , в частности, следует, что

S .™  ( x f) =  (х,.); fl =  0 ,1 .2 ;  і =  2, А - 1 ,

тогда с учетом выражений (5 ) , (6)
и

s f a )  = S'_ , ( Х ' ._ ,) + [ s;_t (х,.) + S i  t (x ._ ,)]
і-1

(6)

(7)

( 8)

5,Ц )  =  St_ ,(* ,_ ,)  + S,#_ , (*,_ , )Лг_ , +

+ H - i W  + 2 ^
A?-i

(9)

Введем традиционные обозначения: М;. — S" (х(), mj — 5 j(x () . Выражения 
(8 ), (9) дают систему уравнений для определения ’’моментов” М(- и М,_ t :

м ,. + м ,_1=  2
т і - Щ -1

1-і

м,. + 2М (._ J = 6

откуда находим

У і - У і - х - к і - х ті - і
h 2f - i

м і =  7 Г  I- 3  (-^f ~ !)  + 2йі-1 т і + А/ - 1 ті-1  Ь ( 10)
7-1
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мI- 1 - г [з О ',--> '|._ 1) - 2 й,._1ті-1 ( ї ї )

Моменты М. иМ._ представляют собой значения соответственно лево-и 
правосторонних вторых производных сплайна, вычисленные в узлах. Если в 
формуле (11) заменить /-1  на / , с учетом условия (7) можно приравнять пра­
вые части выражений (10) и (11). После несложных преобразований получим

г 0 /+1- ^ Л _  1
ty* ,_  j + 2 (ft,. + Л,._ і)  m, + A,_ , ™,+, “  3 [ A_ +

+
O ' , - - ]

2 ,TV-1 . ( 12)

Уравнения (12) дают N  -  2 условий для определения /V значений ш,- и, 
следовательно, любые два из них могут быть фиксированы произвольно. 
Обычно это осуществляется в виде задания краевых условий, фиксирующих 
значения производных сплайна на концах отрезка интерполирования. Сущест­
вует несколько типов краевых условий, которые выбирают в зависимости от 
целей аппроксимации и природы интерполируемых данных. Среди них выде­
лим используемые ниже периодические краевые условия

S ^ ( a ) =  S « \ b )  ; «7 = 0 ,1 ,  2 , (13)

которые применяют при интерполировании периодических функций. Интер­
поляционный сплайн с условиями (13) называется периодическим. В таком 
Случае в силу периодичности

Уы =  Уі> Уы+1= У*> mN = " V ’ mN+i =  m2’ hN = h 1 .

при этом узел Хдг (или х  ) может рассматриваться как внутренний. Выполне­
ние для него условий (7) при q — 2 эквивалентно тому, что уравнения (12) 
справедливы и для і =  N. Тогда система уравнений для определения т.  будет 
иметь следующий вид:

ч j y - i - y ^ N - x
2( V  V - l K  + hN - i m 2 + h im N - i  =3f-----~h------- +

^ Н ~ У ы - ^ Ні л
+ jj-----------1;

/V- 1 (y .  —y ) f I-

himi- 1 + 2 (*/+ v  і к + a / -  , mi+1 = 3 [ 1+1 h ' +

< y , - y , - i * i  _____
+ -----------------  ] ,  / =  2 A -1  •

(14)

Определитель такой системы, называемой ленточной с диагональным пре­
обладанием, всегда отличен от нуля. Поэтому т l = mN , т 2 , ..., mN _ , опре­
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деляются единственным образом. Для решения системы (14) существует эф­
фективный алгоритм, называемый прогонкой [ 2].

После нахождения ш(- коэффициенты сплайна а- в представлении (1) 
можно рассчитать, если в формулу (6) вместо S"(xj ) , S " ( x j+l) подставить их 
значения соответственно из выражений (И )  и (10), предварительно заменив 
в них/ на/+1. Тогда ‘

д/4 =  7 Т 1 - у і)
1 І

аіз =  - ^ - Т н у і+1 - у , )  -  2h.(m.+ m i+l ) ] ;

ai2 = = mi ’ an  = Цхі> = Уі> i =

Кубические сплайны дефекта 1 в результате высокой степени гладкости в 
узлах представляют собой удобные конструкции для аппроксимации кривых. 
Если кривая, подлежащая аппроксимации, замкнута, ее целесообразно аппрок­
симировать периодическим способом.

Задача интерполяции плоской замкнутой кривой может быть сформули­
рована в следующей постановке [3] :  пусть на плоскости даны Лоточек / >.(х;. , 
У/ ) и нужно провести гладкую замкнутую кривую, проходящую через эти точ­
ки в заданном направлении. Будем искать интерполирующую кривую в виде 
периодического сплайна.

Как следует из способа построения, сплайн-функция строится для одно­
значной функции на монотонно возрастающей сетке узлов. С этой целью вве­
дем нормированную /-параметризацию точек Pj ( х _ у ;) по суммарной длине 
хорд, определяемую формулой

',41 -  2
1=1

N
Р,Р/+1 ' / Д  \р/ рі+і

PN+ х =  Р х> t 1 = 0 , i = l , N  .

Очевидно, что / Є [0,1] монотонно возрастает. Построим периодические 
сплайны:

5(х, / )  =  2 b..(t -  tt) 1, S(x, /-) =  х . ;

S(y, / )  =  2  cif( t  -  . 5 0 ,  t i) = y i .

Векторная функция ^5(x ,  t ) , S(y, /)} , называемая параметрическим или 
«екторным сплайном, является решением задачи о гладком обводе заданных 
ючек плоскости.

Математическая модель формы хлыста может быть представлена в виде 
овокупности моделей образующих древесного ствола (хлыста) и его попе­
речных сечений параллельными плоскостями. На основании изложенной в на- 
тоящей статье методики построения сплайновых моделей плоских замкнутых 
ривых было осуществлено моделирование на ЭВМ поперечных сечений хлы-
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d Рис. 1. Зависимость от числа узлов: 
а -  нормы \ \ б  — нормы 2; 1 -  окруж ­
ность; 2 -  эллипс (Ь/а = 0,9) ; 3  — 
улитка П аскаля (е/а =  1,5).

стов. Исследовались аналитические замкнутые кривые (окружность, эллипс, 
улитка Паскаля), заданные параметрическими уравнениями, и реальные се 
чения хлыстов в дискретно-точечном виде. Аналитические кривые интерполи 
ровались на равномерных (по параметру) сетках с четным числом узлов

7ГІ ----------  , .
t. = ------- , i = 0 ,  2m+l , т -  1,2 ...
' т + 1

Для реальных поперечных сечений выбирались ’’квазиравномерные” сет- 
ки, рассчитываемые путем деления дискретного набора на четное число рав­
ных частей и последующего сканирования.

Качество (погрешность) приближения кривых оценивалось вычислением 
остатка интерполирования в двух вариантах -  в виде норм п\ и п2. Норма /И 
представляет собой разность площадей, ограниченных аппроксимирующем 
кривой и сплайном, в процентах к площади,ограниченной исходной кривой, м 
вычисляется по формуле

21 S f  - S *  I

где S* — площадь сектора кривой; 5 ?— площадь сплайнового сектори 
Секторы образовывались лучами,исходящими из центра масс кривой кони 

ра. Площади криволинейных секторов вычислялись путем дискретизации кри 
вой и суммирования площадей соответствующих треугольников. Норма «
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определена как максимальное отклонение исходной кривой от сплайна в про­
центах к минимальному радиусу и вычислена по формуле

шах ш.ах 1^к (*))Л ,0 ; )1
п 2 = —■------------------------------ 100

min |F F ( t  )|м к  v m f  1 
m

PK • Рг ~  соответственно точки дискретизации кривой и сплайна; F — 
центр масс исходного контура. * м

Зависимости скорости сходимости от числа узлов в нормах л1 и п2 для 
аналитических кривых представлены на рис. 1. Как видно из приведенных гра­
фиков, погрешность интерполяции оказалась достаточно низкой и составила 
для шести узлов не более 1,5 % по площади и менее 10 % для нормы п2. Для 
поперечного сечения без крупных особенностей путем сканирования удалось 
получить значение нормы п\ -  4,08 % ( N  =  4 ); 3,54 {N = 6); 1,92 (N  =  8) 
и нормы п2 -  соответственно 12,96, 8,83, 6,42 %.

Таким образом , даже при небольшом числе узлов сетки N =  4, 6 ,8  куби­
ческие сплайны с высокой степенью точности аппроксимируют профили по­
перечных сечении бревен и являются удобным и точным инструментом для по­
строения их адекватных моделей.
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