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экономическую выгоду и социальные преимущества. Применяя 

экологичную упаковку, компания показывает клиентам, что она ценит 

не только прибыль, но и благополучие общества, и заботу об 

окружающей среде, тем самым укрепляя репутацию бренда и повышая 

доверие клиентов. 
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максимальная эффективность 29,2% достигается рекомпрессионным циклом при 

P0 = 17,6 МПа и x = 0,56. 
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EFFICIENCY ANALYSIS OF S-CO2 CYCLES FOR THE «SHELF-

M» SMR 

 

Abstract. A comparison of three s-CO2 Brayton cycle configurations for the Shelf-

M reactor unit was carried out with parameter optimization using the Nelder–Mead 

method. The obtained efficiency–pressure curves demonstrate a pronounced influence of 

the pseudo-critical region on optimal operating conditions. It is shown that the 

recompression cycle provides the highest efficiency of 29.2% at P0 = 17.6 MPa and x = 

0.56. 
 

Атомные станции малой мощности (АСММ) рассматриваются 

как перспективный источник энергоснабжения для удаленных и 

изолированных районов, где доставка традиционного топлива 

затруднена и отсутствует развитая энергетическая инфраструктура. 

Для таких регионов, особенно в условиях Крайнего Севера, актуальны 

разработки компактных, транспортабельных ядерных энергоблоков. 

Одним из ключевых факторов повышения эффективности и 

технологической реализуемости энергетических установок на базе 

АСММ является выбор рациональной схемы преобразования тепловой 

энергии реактора в электрическую. Для маломощных интегральных 

реакторных установок (РУ) с умеренными параметрами теплоносителя, 

таких как «Шельф-М», целесообразно рассматривать альтернативу 

традиционному паровому циклу в виде замкнутых термодинамических 

циклов Брайтона с рабочим телом на основе сверхкритического 

диоксида углерода (s-CO2) [1]. Данные циклы характеризуются 

высокой эффективностью уже при температурных уровнях порядка 

280–320 °C, что соответствует характеристикам легководных 

реакторов. Дополнительными преимуществами являются высокая 

плотность рабочего тела, позволяющая существенно снизить габариты 

и массу турбомашин, а также компактность теплообменного 

оборудования [2,3]. Это, в свою очередь, открывает возможность 

предварительной полной сборки и испытания энергоблока в заводских 

условиях с последующей транспортировкой на площадку эксплуатации 

в виде законченного модуля, что особенно важно для труднодоступных 

районов. Таким образом, циклы на s-CO2 представляют собой 

перспективное решение для применения в составе АСММ, 
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ориентированных на энергообеспечение удаленных и изолированных 

потребителей. 

Цикл Брайтона на s-CO2 может реализовываться в различных 

конфигурациях, отличающихся уровнем энергоэффективности и 

конструктивной сложностью. В настоящей работе рассмотрены три 

схемы: простая (без регенерации) (1), с регенерацией (2) и с 

рекомпрессией (3). Каждая из конфигураций проанализирована на 

предмет применимости к условиям РУ «Шельф-М» и возможности 

достижения максимального внутреннего абсолютного КПД (КПД) при 

допустимых тепловых параметрах. Объектом исследования являются 

варианты термодинамических циклов на s-CO2 в составе АСММ с 

реактором «Шельф-М» и их энергетические характеристики. Основные 

параметры, использованные в расчетах, приведены в табл. 1. 

 
Таблица 1 – Параметры, используемые для расчета [4] 

Параметр РУ Значение Параметр Значение 

Тепловая мощность реактора, МВт 35,2 
Внутренний относительный 

КПД турбомашин, % 
90 

Давление первого контура, МПа 14,7 
Внутренний относительный 

КПД компрессоров, % 
80 

Температура теплоносителя на входе 

в реакторный теплообменник, °C 
308 

Минимальный температурный 

напор в реакторном 

теплообменнике, °C 

20 

Температура теплоносителя на выходе 

из реакторного теплообменника, °C 
271 

Минимальный температурный 

напор в регенераторах, °C 
10 

Рабочая среда первого контура H2O 
Температура холодного 

источника, °C 
35 

 

На основании расчетных данных построены зависимости 

термического КПД трех вариантов s-CO2-цикла от начального давления 

P0 (рис. 1, а). Во всех точках на графике показан КПД при оптимальных 

параметрах цикла, определенных методом Нелдера–Мида (критерий – 

max(КПД)) для каждого значения P0. 

 

  
а) б) 

Рис. 1- Зависимость КПД (а) и оптимального нижнего давления Pхол.ист (б) трех 
вариантов s-CO2-цикла от начального давления P0 

 

10

15

20

25

30

12 16 20 24 28 32

К
П

Д
, %

P0, МПа

1
2
3

4

6

8

10

12

14

12 16 20 24 28 32

P
хо

л
.и

ст
., 

М
П

а

P0, МПа



310 

 

Для простой схемы наблюдается практически монотонный рост 

КПД от ≈11,7 до 21,3 % при увеличении P0 с 12 до 35 МПа. Для схемы 

с регенерацией эффективность возрастает с 22,5 до 26,3% при P0 = 22–

30 МПа, после чего на высоких давлениях тенденция переходит в 

слабое плато с незначительным ростом. Рекомпрессионная схема 

демонстрирует наибольшие значения КПД во всем диапазоне: 

максимум порядка 29,2 % достигается при P0 = 17,6 МПа, после чего 

эффективность плавно уменьшается до 26,3 % при 35 МПа. 

На рис. 1, б показано изменение оптимального нижнего давления 

Pхол.ист. для трех вариантов цикла. Во всех случаях Pхол.ист растет с 

увеличением P0, но характер роста различается. Для простой схемы 

Pхол.ист остается ниже псевдокритического давления CO2 (≈8 МПа) и 

увеличивается умеренно. Для схемы с регенерацией оптимальное 

Pхол.ист подходит к псевдокритической области при P0 = 20–22 МПа, 

после чего рост ускоряется. Для рекомпрессионного цикла Pхол.ист 

находится выше псевдокритического давления во всем диапазоне, и его 

увеличение с ростом P0 выражено сильнее. 

Поскольку именно рекомпрессионная схема демонстрирует 

наибольшую эффективность среди рассмотренных вариантов, 

дальнейший анализ выполнен для нее. На рисунке 2 представлено 

распределение полей КПД рекомпрессионного s-CO2-цикла в 

координатах начального давления P0 и доли рекомпрессии х. Изолинии 

эффективности формируют выраженный максимум, соответствующий 

оптимальной комбинации параметров. Область максимума достаточно 

узкая, что свидетельствует о высокой чувствительности схемы к 

выбору режимных параметров. Анализ двумерного поля показывает, 

что увеличение давления P0 повышает эффективность лишь до 

определенной границы; дальнейший рост приводит к росту удельных 

затрат на компримирование. Аналогично изменение доли 

рекомпрессии x сначала улучшает температурный профиль в 

регенераторах и снижает тепловые потери на охлаждение, однако при 

слишком высокой доле перепуска ухудшается степень регенерации, и 

КПД снижается. Максимальная энергоэффективность наблюдается при 

параметрах P0= 17,6 Мпа и x = 0,56. В табл. 2 приведены параметры в 

узлах схемы при полученных оптимальных значениях P0 и x. 
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Рис. 2- Поле распределения КПД рекомпрессионного s-CO2-цикла в координатах 

начального давления P0 и доли рекомпрессии x 

 

Подводя итоги, в работе выполнено сравнение трех вариантов 

CO₂-циклов для условий РУ «Шельф-М». Расчёты показывают, что 

рекомпрессионный цикл обеспечивает максимальный внутренний КПД 

— до 29,2 % при P₀ = 17,6 МПа и x = 0,56, что заметно выше значений 

для простой (до 21 %) и регенеративной (до 26 %) схем. Оптимизация 

параметров выявила выраженный максимум эффективности и высокую 

чувствительность к начальному давлению и доле рекомпрессии. 

Применение рекомпрессионного s-CO₂-цикла позволяет увеличить 

эффективность на 0,8 % абсолютных по сравнению с традиционным 

пароводяным циклом Ренкина для данного уровня тепловой мощности 

(КПД Ренкина ≈ 28,4 %). Таким образом, рекомпрессионный CO₂-цикл 

является наиболее перспективным вариантом для интеграции с АСММ 

«Шельф-М» и формирует основу для дальнейшей компоновочной и 

теплотехнической оптимизации энергоблока. 
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Рис. 3 - Параметры в узлах рекомпрессионного s-CO2-цикла: РТ – реакторный 
теплообменник; Т – турбина; ВТР/НТР – высоко-/низкотемпературный регенератор, 
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ОХЛ – холодный источник; ОК – основной компрессор; РК – рекомпрессионный 
компрессор 
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