

Prof. Dr. M. Naveed Zafar, Prof Amir Waseem  
Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan

## **DONOR FLEXIBLE SPECTATOR LIGANDS ANCHORED Pd (II) AS ELECTROCATALYSTS FOR CO<sub>2</sub> REDUCTION**

The utilization of CO<sub>2</sub> into synthesis gas as a substitute of processing fossil fuel to produce hydrocarbons is a sustainable and carbon neutral energy technology. The electrochemical reduction of CO<sub>2</sub> into a mixture of CO and H<sub>2</sub> at commercial scale still requires efficient electrocatalyst. In this perspective, a series of new palladium complexes<sup>1-3</sup> with general formulas, [Pd(L<sup>1</sup>)(Y)]Y, [Pd(L<sup>2</sup>)(Y)<sub>2</sub>] and [Pd(L<sup>3</sup>)(Solvento)] Where L<sup>1-3</sup> are different donor flexible spectator ligands and Y/ Solvento are actor ligands, were utilised as active electrocatalysts for the conversion of CO<sub>2</sub> into synthesis gas. All compounds were successfully characterized by various physical methods of analysis such as proton and carbon NMR, FTIR, CHN and single crystal XRD. The redox chemistry of palladium complexes toward carbon dioxide activation suggested an evident CO<sub>2</sub> interaction with each Pd(II) catalyst. The best electrocatalytic activity for CO<sub>2</sub> reduction into synthesis gas under acidic condition of trifluoracetic acid (TFA) was obtained with a minimum overpotential of 0.11 V, maximum turnover frequency (TOF) of 461 s<sup>-1</sup> and 81% FE of CO. These pincer scaffolds can be stereo-chemically tuned with its exploration with earth abundant first row transition metals for further improvement in CO<sub>2</sub> reduction chemistry.

## **REFERENCES**

1. Afshan Khursheed, M. Naveed Zafar\* PhD Thesis: Donor Flexible Nitrogen Ligands for Efficient Palladium-Catalysed CO<sub>2</sub> Reduction, Quaid- I-Azam University Islamabad, 2025.
2. Shazia Hussain, M. Naveed Zafar\* PhD Thesis: Imino-Amido based Unsymmetrical Ligands with Pd (II) for Electrochemical CO<sub>2</sub> Activation, Quaid-I-Azam University Islamabad, 2025.
3. M. Naveed Zafar, Jason Love\* Post Doctoral Report: Valorisation of carbon dioxide by redox catalysis, The University of Edinburgh, UK, 2023.