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СТАТИСТИЧЕСКОЕ ИССЛЕДОВАНИЕ ТЕПЛОВЫХ 
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МОЛЕКУЛЯРНЫХ НАНОЧАСТИЦАХ 

Ранее предприняты первые шаги для практической реализации 

идеи о принципиальной возможности сокращенного описания флукту-

аций поля плотности с помощью введенной цепочки коррелятивных 

функций для ансамбля взаимодействующих элементарных флуктуа-

ций плотности (ЭФП) [1].  

Они с определенной вероятностью возникают и исчезают случай-

ным образом на фоне однородной макроскопической системы с задан-

ными термодинамическими параметрами, и поэтому их можно рас-

сматривать в качестве квазичастиц. Их коррелятивные функции вве-

дены аналогично тому, как это сделано для системы реальных частиц 

(атомов либо молекул) в известном методе Боголюбова – Борна – 

– Грина – Кирквуда – Ивона (ББГКИ). В качестве потенциалов взаимо-

действия ЭФП с однородной средой (без учета флуктуаций) и между 

собой в этой работе используются энергии образования одиночных 

( )ixW( )iW�����WW  и бинарных ( , )i jx xW( , )i j,,,,,,,W�����WW  ЭФП, расчет которых возможен в рамках 

двухуровневого статистического метода [2] описания свойств неодно-

родных систем, одним из примеров которых как раз и являются си-

стемы с флуктуирующим полем плотности.  

Конкретные численные расчеты выполнены для простой молеку-

лярной системы с межчастичным взаимодействием Леннард-Джонса, 

которая представляет собой сферическую наночастицу, находящуюся в 

термостате с заданными термодинамическими параметрами (темпера-

тура и химический потенциал).  

В связи с этим для статистического описания такой системы ис-

пользуется большой термодинамический потенциал W{rl}, который яв-

ляется функционалом поля плотности rl, сформированным с помощью 

соответствующего ансамбля ЭФП. 

В данной работе для практической реализации идеи о сокращен-

ном описании поля флуктуаций в молекулярной среде со средней плот-

ностью nc используются ЭФП в виде сферических волн с различными 

значениями амплитуд x и волновых чисел k [3]: 
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Потенциалы W (x1,k1,x2,k2,r) для бинарных ЭФП с двумя центрами 

на фиксированном расстоянии r друг от друга позволяют выполнить 

численное усреднение произведения флуктуаций плотности в двух точ-

ках системы. Это позволит рассчитать бинарную корреляционную 

функцию G ( )r )
��

 наноразмерной либо макроскопической системы с уче-

том флуктуаций поля плотности по следующей формуле: 
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где 
1 1 1( , ,0),n n x kD = D  

2 2 2( , , ).n n x k rD = D  

Отметим, что для наночастицы радиусом R, имеющей собствен-

ную сферическую границу, функция G ( )r )
��

 зависит от положения цен-

тров бинарных ЭФП и их ориентации внутри сферы, т. е. она анизо-

тропна, тогда как аналогичная функция однородной макроскопической 

системы изотропна, т. к. зависит только от r. 

Численные расчеты потенциалов W (x1,k1,x2,k2,r) выполнены с по-

мощью специальных компьютерных программ (разработанных с ис-

пользованием системы Mathcad) для наночастицы как молекулярной 

термодинамической системы, находящейся в равновесии с термоста-

том в окрестности критической точки жидкость – газ.  

При этом все величины обезразмерены с помощью линейного и 

энергетического параметров потенциала Леннард-Джонса. Конкретные 

расчеты выполнены для сферической наночастицы радиусом R = 31,4, 

что примерно соответствует 15 нанометрам. Она находится в термо-

стате при температуре q = 3,5 и плотности r = 1 / v = nc / w, здесь nc = 

0,505 – средние числа заполнения элементарных ячеек кубической ре-

шетки в статистическом методе условных распределений, w – объем 

ячеек, для которых расстояния между ближайшими узлами d = 1,096. 

Для этих термодинамических параметров химический потенциал си-

стемы m = – 3,0523 при учете взаимодействия каждой молекулы с тремя 

ближайшими соседями в решетке. 

В качестве примера на рис. 1 приведены графики энергий обра-

зования бинарных ЭФП для разных наборов значений амплитуд x1, x2 и 

расстояния r = 2. 
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Рисунок 1 – Спектральные зависимости энергии образования двух бинарной 

ЭФП с заданными разными значениями амплитуд одинаковых знаков:  

а – x1 = 0,02 и x2 = 0,04; б – x1 = – 0,04 и x2 = – 0,02 

Выполненные в работе численные расчеты энергии образования 

бинарных флуктуаций показали, что сформулированная ранее идея о 

принципиальной возможности сокращенного статистического описа-

ния флуктуаций поля плотности может быть практически реализована 

при исследовании вкладов тепловых флуктуаций в термодинамические 

характеристики наноразмерных систем, что в принципе невозможно 

сделать известными из литературы методами. 
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