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ОСОБЕННОСТИ ПОВЕДЕНИЯ РЕШЕНИЯ ГРАНИЧНЫХ 
ЗАДАЧ С МАЛЫМ ПАРАМЕТРОМ ПРИ СТАРШЕЙ 
ПРОИЗВОДНОЙ В ЗОНАХ ПОГРАНИЧНЫХ СЛОЕВ 

Математическими моделями диффузионно-конвективных про-

цессов являются двухточечные граничные задачи. При этом диффузи-

онным членом является член, содержащий производные второго по-

рядка, а конвективным членом будет называться слагаемое, включаю-

щее в себя производные первого порядка. Такого рода задачи возни-

кают в дифференциальных уравнениях, содержащих малый параметр 

при старшей производной, и являются задачами с одним или двумя по-

граничными слоями.  

Задачи с пограничным слоем относятся к области гидродинамики 

и аэродинамики, где изучается поведение жидкости или газа вблизи по-

верхности тела. Пограничный слой – это тонкий слой жидкости или 

газа рядом с поверхностью, где скорость течения изменяется от нуля 

(на самой поверхности из-за сцепления) до значения, соответствую-

щего основному потоку. 

При малом 0e > решение может испытывать резкие изменения 

вблизи одной из границ области, что приводит к возникновению погра-

ничного слоя. Этот слой — достаточно узкая область, расположенная 

вблизи границ интервала, где решение, а особенно градиент решения, 

неограниченно растет, в то время как во внутренней области решение 

изменяется достаточно плавно. 

Рассмотрим двухточечные граничные задачи с малым парамет-

ром при старшей производной для обыкновенных дифференциальных 

уравнений второго порядка вида: 
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где 0>e – малый параметр при старшей производной. Задача вида (1) 

имеет два пограничных слоя.  

Граничная задача с одним пограничным слоем имеет вид: 
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Если ( ) 0a x > , то пограничный слой чаще всего возникает в 

начале, то есть в левой части заданного отрезка вблизи точки 0x = , а 
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если ( ) 0a x < , то в конце отрезка, то есть в его правой части, вблизи 

точки 1x = . 

Представим обыкновенное дифференциальное уравнение (1) в 

виде системы о. д. у. вида    
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с граничными условиями: 
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где ( )f x – функция, непрерывная на отрезке [ , ]a b , iii gba ,,  – за-

данные числа. Предположим, что существует единственное искомое 

решение задачи (1), (4). Обозначим это решение через )(xy1 , а его гра-

диент через ).(xy2  

В виде системы уравнений (3) можно представить любое линей-

ное о. д. у. Граничные условия вида (4) представлены в общем виде, что 

позволяет рассматривать и более широкий класс задач.  

Для решения граничных задач с малым параметром при старшей 

производной и с возникающими при этом пограничными слоями ис-

пользуем метод дифференциальной ортогональной прогонки. А чтобы 

вблизи пограничных слоев не так быстро росли решение и градиент ре-

шения введем в рассмотрение регулирующие множители 1( , ) 0m x e > и  

2 ( , ) 0m x e > . 

Регулирующие множители составляем в виде стабилизируемых 

произведений )(),( xyxm 11 e  и  )(),( xyxm 22 e . Они регулируют поведе-

ние функции )(xy  и его производной )(xy¢  вблизи зон пограничных 

слоев.  

Используя метод дифференциальной ортогональной прогонки с 

найденными решениями трех задач Коши )(xQ , ( )u x , ( )v x , получим 

выражения для искомого решения и его градиента в виде [1]: 
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В качестве иллюстрации данного метода представим решение 

двух задач с малым параметром при старшей производной:  
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Пример1. Решить граничную задачу с одним пограничным слоем 

вида ( ) ( 1/ 2) ( ) ( ) 0y x x y x y x¢¢ ¢e - - - =  с граничными условиями: 

(0) 1, (1) 1y y= = , 
310-e = . 

Пример 2. Решить граничную задачу с двумя пограничными сло-

ями вида 
2 2( ) ( ) cos 2 cos2y x y x x x¢¢e - = p + ep p  с граничными услови-

ями: (0) 0, (1) 0y y= = , 
310-e = . 

Решения обеих задач представлено в виде двух графиков. 
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ОСОБЕННОСТИ ДИНАМИКИ КВАНТОВЫХ СИСТЕМ, 
ВОЗБУЖДАЕМЫХ КОГЕРЕНТНЫМ ПОЛЕМ ИЗЛУЧЕНИЯ, 

И ЗАКОНЫ ДИАЛЕКТИКИ  

Разработанный авторами дискретный спектральный алгоритм 

приводит к точному решению задачи о когерентном возбуждении кван-

товых систем (КС) классическим излучением. Эта модель, как и ее пол-

ностью квантовый вариант лежат в основе ряда современных техноло-

гий: лазерное разделение изотопов, управление химическими реакци-

ями, создание квантовых компьютеров, криптографии и др. Алгоритм 

использует два пространства: энергия –время, с искомой функцией 

( ), 0,1, ,na t n N= ,N,  – амплитудой вероятности КС и спектральное 
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