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УДК 517.584 

Л.Д. Яроцкая, доц. (БГТУ, г. Минск, РБ) 

ПРИМЕНЕНИЕ ТЕОРЕМ СУММИРОВАНИЯ 

ГИПЕРГЕОМЕТРИЧЕСКИХ РЯДОВ  

При решении вычислительных задач, связанных с суммирова-

нием величин, отношение которых является некоторой рациональной 

функцией, важную роль играют гипергеометрические ряды. 

Обобщенный гипергеометрический ряд 
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содержит в числителе p, а в знаменателе q параметров, коэффициенты 

определяются символом Похгаммера по формуле: 
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где ( )zG  – гамма-функция Эйлера [1]. Чтобы избежать деления на ноль 

в правой части (1), ни одно b не может быть нулем или целым отрица-

тельным. В остальном все a и b могут быть любыми. Отрицательное 

целое число в качестве верхнего параметра превращает бесконечный 

ряд в конечную сумму. 

Γ-функция является одной из простейших неэлементарных функ-

ций и осуществляет естественное распространение факториала на ве-

щественные значения аргумента 
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Отметим, что вопросы сходимости бесконечных гипергеометри-

ческих рядов рассматриваются в теории функции комплексного пере-

менного. Для исследования сходимости ряда можно применить, напри-

мер, признак Даламбера. 

Рассмотрим, например, бесконечный ряд с отношением членов  
2

1

2

6 8
,

9 1

k

k

u k k

u k

+ + +
=

+
 

которые являются некоторыми многочленами от k. Согласно основной 

теореме алгебры любая рациональная функция от k может быть разло-

жена на линейные множители над полем комплексных чисел. Имеем 
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В числитель и знаменатель добавили множитель ( )1k + , кон-

станту обозначим z. Таким образом,  
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Обобщенные гипергеометрические ряды порождают специаль-

ный класс функций – функции гипергеометрического типа, которые 

при частных значениях своих параметров содержат такие простые эле-

ментарные функции, как степенная, экспоненциальная, логарифмиче-

ская, специальные многочлены, тригонометрические и обратные три-

гонометрические функции, и являются естественными аналитическими 

обобщениями этих элементарных функций. 

Гипергеометрические ряды (1) также могут быть использованы 

для вычислить в замкнутом виде некоторых сумм, содержащих, напри-

мер, биномиальные коэффициенты. При этом используются следую-

щие методы: 

- придание специальных значений аргументу z, 

- выбор в качестве параметров a или b отрицательных целых чи-

сел, 

- сравнение коэффициентов при одинаковых степенях z в раз-

личных выражениях для гипергеометрического ряда. 

Приведем несколько формул такого рода при 1.z =   

Теорема суммирования Гаусса: 
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Теорема суммирования Вандермонда: 
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Теорема суммирования Заальшютца: 
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Частным случаем формулы (2) является биномиальная теорема: 
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которая имеет многочисленные приложения в различных областях, 

включая математику, статистику, компьютерные науки. Биномиальный 

коэффициент в правой части формулы (5), определенный для произ-

вольного действительного показателя a, связан с Γ-функцией следую-

щим образом: 
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Отметим, что одно из фундаментальных тождеств для биноми-

альных коэффициентов – свертка Вандермонда: 
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является следствием теоремы 3. Примерами сумм с двумя и тремя би-

номиальными коэффициентами являются формулы 
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å  – формула Куммера. 

Отметим, что многочисленные результаты, относящиеся к тео-

рии специальных функций и, в частности, функций гипергеометриче-

ского типа, можно найти в справочнике [2] или на сайте Wolfram 

Functions Site. 
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