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B, x 
! "= "2.26 — оптимальная ёмкость резервуара C, #$

! "= "11.23 — оп-

тимальный годовой отбор воды на ирригацию, #%
! "= "3.13 — оптималь-

ная мощность гидроэлектростанции. 

Максимальная приведённая стоимость чистых выгод составляет: 

&'#()#* = ()#!* = 524.8119 усл. единиц. 

Полученные результаты показывают возможность эффективного 

использования ресурсов при сбалансированном подходе к проектиро-

ванию системы водоснабжения. Оптимальные параметры позволяют 

максимизировать выгоду, обеспечивая устойчивое водоснабжение для 

ирригации и энергетики. 
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УПРАВЛЯЕМОСТЬ ИНТЕРВАЛЬНЫХ ЛИНЕЙНЫХ  
СИСТЕМ С ПОМОЩЬЮ ДИНАМИЧЕСКИХ РЕГУЛЯТОРОВ. 

ЧИСЛЕННЫЙ ЭКСПЕРИМЕНТ 

В докладе рассматривается задача управляемости ансамбля ли-

нейных непрерывных систем динамическим регулятором. Эта задача 

сводится к нахождению решения специальной задачи линейного про-

граммирования. Доказано достаточное условие управляемости таких 

систем и решено несколько примеров. 

Рассмотрим линейную систему: 

 0( ) ( ) ( ), (0) ,x t Ax t Bu t x x= + =( ) (x( ) (( ) (((�((xx((       (1)  

где x(t) – n-вектор состояния,  ! – начальное состояние, A – (n × n)-

матрица, B – (n × r)-матрица, u(t) – r-вектор управления. Здесь матрицы 

A и B и вектор  ! являются интервальными параметрами, удовлетворя-

ющими следующим условиям: ,A A A£ £  ,B B B£ £  0 0 0x x x£ £ . Мат-

рицы A и B принимают значения независимо друг от друга, то есть мы 

имеем совокупность линейных систем (1), называемых ансамблем. 

На вход системы (1) подадим управление 

 ( ) ( ),u t Cy t=  (2) 
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которое является выходом динамической системы 

 0,( ) ( ), (0)y t Dy t y y= =( ) (y t Dy t( ) (( ) (((���((yy((  (3) 

где C − постоянная матрица размерности (r × n), y,    − n-векторы, D – 

(n × n)-матрицa.  

Зафиксировав матрицы A, B и некоторый вектор 0y , получим 

единственное решение для системы (1): 1 0( ) ,x t My P= -  где 

1 0( , ) ,P F t xt=-  
1

1

0

( , )
t

DM F t BC de tt t= ò  и F(t, τ) − фундаментальная мат-

рица решений однородной системы. 

Ансамбль систем (1) называется управляемым динамическим ре-

гулятором (3), если для любого начального состояния 0x  найдутся та-

кой момент времени 1 1,(0 ),t t< < +¥  и вектор 0y , что регулятор (3) при-

водит все сечения 1( )x t  решений ансамбля в нуль. 

При такой формулировке задача управления имеет решение 

только в исключительных случаях. Поэтому вместо нее рассматрива-

ется задача нахождения такого вектора 0y , чтобы динамический регу-

лятор (3) приводил все решения ансамбля в некоторую ε-окрестность 

нуля, то есть 1 0( ) ,Myx t P e= - £  где вектор 1( )x t  состоит из модулей 

компонент вектора 1( )x t , ε − n-вектор, 0e ³ , при этом значение 
1

n

i
i

e
=
å  

является минимальным. Тогда нахождение минимальной ε-окрестно-

сти нуля можно свести к решению задачи линейного программирова-

ния относительно переменных ε и 0y . 

В силу [2], матрица F является интервальной, значит, матрицы P 

и M также принимают значения из некоторого интервала. Опираясь на 

результаты работы [2], получим задачу линейного программирования 

относительно ε, 
0y  и ω:  
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 (4) 

Множество планов этой задачи не пусто и целевая функция на 

нем ограничена снизу, значит, оптимальный план задачи существует. 

Теорема. Для управляемости ансамбля систем (1) достаточно, 
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чтобы разрешимая задача линейного программирования (4) имела оп-

тимальный план ( 0e , 
0
0y , 0w ) с 0 0e = . В противном случае пучок тра-

екторий систем переходит в минимальную 0e -окрестность нуля. 

Пример 1. 

Рассмотрим задачу управляемости системы (1) со следующими 

параметрами: 

0.1 0.7 0.05 0.75

0.75 0.1 0.6 0.05
A

- -æ ö æ ö
£ £ç ÷ ç ÷- - - -è ø è ø

, 
0.055 0.1

0.5 0.65
B

æ ö æ ö
£ £ç ÷ ç ÷

è ø è ø
, 

0

0.65 0.85
,

0.65 0.85
x

æ ö æ ö
£ £ç ÷ ç ÷

è ø è ø
 ( )2 0.5 ,C = -  

0.4 0.3
.

0.2 0.4
D

-æ ö
= ç ÷- -è ø

 

С этими параметрами решив задачу (4), получим оптимальный 

план (рис. 1). 

0 0.3995
,

0.0688
e

æ ö
= ç ÷
è ø

 0
0

0.4383
.

3.4709
y

-æ ö
= ç ÷
è ø

 

 
Рисунок 1 – Фазовый портрет траекторий 1 3, 10t N= =  

Как видно из рис. 1, все траектории ансамбля попадают в найден-

ную 0e -окрестность нуля за конечное время.  

Пример 2. 

Возьмем систему с параметрами: 
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0.2 0.82 0.15 0.87

0.87 0.1 0.72 0.05
A

- -æ ö æ ö
£ £ç ÷ ç ÷- - - -è ø è ø

, 
0.06 0.105

0.64 0.79
B

æ ö æ ö
£ £ç ÷ ç ÷

è ø è ø
, 

0

0.75 0.55
,

0.75 0.65
x

- -æ ö æ ö
£ £ç ÷ ç ÷- -è ø è ø

 ( )1.88 0.56 ,C = -  
0.074 0.55

.
0.045 0.54

D
-æ ö

= ç ÷- -è ø
 

Решая задачу (4), получим (рис. 2): 

0 0.2303
,

0.1314
e

æ ö
= ç ÷
è ø

 0
0
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.
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y

æ ö
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Рисунок 2 – Фазовый портрет траекторий 1 3, 10t N= =  

Из рис. 2 видно, что все траектории ансамбля также попали в 

найденую 0e -окрестность нуля за конечное время. 
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