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УДК 517.977 

А.А. Якименко, доц. (БГТУ, г. Минск) 

К ВОПРОСУ О МОДАЛЬНОМ УПРАВЛЕНИИ ОДНОЙ 
ЛИНЕЙНОЙ СТАЦИОНАРНОЙ СИСТЕМОЙ 

С ЗАПАЗДЫВАЮЩИМ АРГУМЕНТОМ С ТРЕМЯ 
СОИЗМЕРИМЫМИ ЗАПАЗДЫВАНИЯМИ 

Рассмотрим линейную стационарную систему с запаздывающим 

аргументом с одним входом и тремя соизмеримыми запаздываниями: 
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где , 0, 1, 2, 3jA j =  – постоянные (2×2)-матрицы; 0h > – постоянное за-

паздывание; b  – постоянный 2-вектор; u  – скалярное управление. Не 

ограничивая общности, можно считать, что ( )0 1b¢ = (штрих ( )¢×  озна-

чает транспонирование). 

Характеристическое уравнение разомкнутой (с нулевым управле-

нием) системы (1) имеет вид 
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где ,lÎ ,�����  
j he- l

 – оператор сдвига ( ( )j he x t- l º ( )x t jh- ). 

Присоединим к системе (1) регулятор вида 
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где , ,l M Î ,�����  ,jq  0, 1, ,j M= M, – 2-векторы; ( ),g s  [ ], 0s hÎ -  – непре-

рывная 2-вектор-функция. 

В частотной области регулятор (3) имеет вид 
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где ( )G l  – целая функция, определяющая интегральную часть (3). 

Определение. Система (1) модально управляема регулятором 

вида (3), если для наперед заданных чисел , 0, 0, 6;ij i ja = =,ij j0,0,

р

00a ,ij 0,00�����aa  1,i =  

0, 1, 2, 3j =  найдется такой регулятор, при котором характеристиче-

ское уравнение замкнутой системы (1), (3) будет иметь вид (ср. с фор-

мулой (2)): 
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Пусть  
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где , 0, 0, 6;ij i ja = =, 0,ij j0,0,a ,ij 0,0,0�����aa  1, 0, 1, 2, 3i j= =  – произвольные числа. Тогда си-

стема (1), замкнутая регулятором, решающим задачу модального 

управления, имеет следующее характеристическое уравнение: 
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Обозначим 
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0 1 2 3 .m A Am A m Am= + + +A  Не ограничивая общности, можно счи-

тать, что матрица ( )mA  имеет вид 
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В данном докладе рассмотрим случай 
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Тогда матрица ( )mA  примет вид 
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Регулятор, решающий задачу модального управления, будем ис-

кать в виде 

 ( ) ( ) ( )1 2, , ,U m u m u ml = l l =é ùë û  

 ( ) ( ) ( ) ( )11 21 2 22, ,m a m m a m= h - h l -é ùë û     (10) 

где ( )11 mh -полином относительно .m  

Компоненту ( )2 , mh l  регулятора (10) разделим на дифференци-

ально-разностную (ей соответствует некоторый квазиполином) и инте-

гральную части: 
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где ( )21 mh  – полином относительно ;m  ( )22 , mh l  соответствует инте-

гральной части. Будем искать эту функцию в следующем виде: 
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1 2 3, ,c c c  – некоторые числа, подлежащие определению. 

Характеристическое уравнение замкнутой регулятором (10) системы 

(1) примет вид 
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Чтобы получить для замкнутой системы характеристическое 

уравнение (7), выберем в качестве 
21h  следующий квазиполином: 

21 0 1,ah =- -m  

где 
1m  определен в формуле (5). 

Тогда характеристическое уравнение замкнутой системы примет 

вид 
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Чтобы последнее уравнение имело вид (7), нужно выполнение ра-

венства 
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Выразив отсюда 
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Последняя дробь, в общем случае, не является полиномом отно-

сительно .m  Подберем 
1 2,с c  и 

3с  так, чтобы правая часть формулы (12) 

стала полиномом. Для этого вначале выделим целую часть в (12). 
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Потребуем, чтобы числитель последней дроби был бы равен 

нулю. Имеем: 
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Отсюда видно, что в качестве 
2с  можно взять 
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Тогда с учетом соотношений (13), (14) 
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Нетрудно увидеть, что для того, чтобы 
2с  из формулы (15) было 

бы полиномом относительно ,m  необходимо и достаточно выполнения 

условия 
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и принимая во внимание (13), (14), (15)  после несложных преобразова-

ний получим 
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Таким образом, с учетом (10) регуляторы в частотной области 
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решают задачу модального управления для системы (1) при выполне-

нии условия (16). Отсюда видна справедливость следующей теоремы. 

Теорема. Для того чтобы система (1) была модально управляема 

регулятором вида (3) в случае (9), необходимо и достаточно выполне-

ния условия (16). При этом регуляторы, решающие задачу модального 

управления, в частотной области имеют вид (17), (18).  


