
212

УДК 003.295

Е.В. Обухова, маг.; Н.П. Шутько, доц. (БГТУ, г. Минск, РБ)

АНАЛИЗ КОДА ПОЛУЧЕНИЯ ИНФОРМАЦИИ
ИЗ КОНТЕЙНЕРА MP4

В современном мире цифровых технологий мультимедийные

контейнеры играют ключевую роль в хранении, передаче и воспроиз-

ведении мультимедийного контента. Получение информации из таких

контейнеров позволяет анализировать структуру мультимедиа, обеспе-

чивать корректное воспроизведение на различных устройствах и плат-

формах, а также оптимизировать процессы обработки видео- и аудио-

данных.

MP4 – это мультимедийный контейнер, основанный на формате

QuickTime MOV [1]. Он поддерживает видео, аудио, субтитры и изоб-

ражения. Преимущества MP4 включают высокую степень сжатия дан-

ных, компактность, широкую совместимость и поддержку различных

типов мультимедиа.

Файлы MP4 обладают модульной структурой, в которой данные

организованы в виде атомов. Каждый атом включает в себя заголовок

размером 8 байт, содержащий информацию о размере и типе атома,

а также непосредственно данные. Среди ключевых атомов можно вы-

делить следующие:

- ftyp: определяет тип файла и его совместимость с различными

стандартами;

- moov: содержит метаданные, связанные с фильмом, такие как

частота кадров, продолжительность видео и конфигурация декодеров;

- mdat: хранит медиаданные, включая видео- и аудиокадры;

- stts, stsc, stsz: таблицы, описывающие временные выборки,

фрагменты и их размеры;

- meta: включает дополнительные метаданные, которые могут

быть полезны для расширенного анализа контента.

Знание структуры и организации данных в файлах MP4 имеет ре-

шающее значение для эффективной обработки и конвертации мульти-

медийного контента. На основе этой информации можно разработать

программные решения, способные анализировать и обрабатывать

мультимедийные потоки. Анализируемый программный код [2], части

которого будут представлены далее, предназначен для рассмотрения

структуры контейнера MP4, включая содержимое атомов и используе-

мые кодеки. Это позволяет определить характеристики мультимедий-

ного потока, облегчая декодирование и последующее кодирование.

Полученная информация используется для выбора подходящего

213

алгоритма обработки, обеспечивая корректное преобразование аудио-

и видеопотоков с оптимальными параметрами качества и размера. Дан-

ный код реализован на языке программирования Python, что обеспечи-

вает совместимость с существующим проектом и упрощает разработку

за счет доступа к библиотекам для работы с мультимедийными дан-

ными. Для обработки бинарных данных используется библиотека

struct, позволяющая упаковывать и распаковывать данные для извлече-

ния метаданных, таких как частота кадров и параметры кодека. Рас-

смотрим основные функции анализируемой программы.

Функция find_boxes выполняет поиск атомов в файле MP4

и определяет их смещения. В результате работы функции формируется

словарь, где ключами являются типы обнаруженных атомов, например,

'ftyp' или 'moov', а значениями – кортежи с абсолютными смещениями

начала и конца каждого атома.

Функция examine_mp4, часть кода которой представлена в ли-

стинге 1, выполняет диагностику структуры MP4-файла, проверяя

наличие критически важных атомов и извлекая информацию о них.

Этот процесс позволяет убедиться в целостности контейнера, а также

подготовить данные для дальнейшей обработки.

moov_boxes = find_boxes(f, boxes[b"moov"][0] + 8,
boxes[b"moov"][1])
print("Moov boxes:",moov_boxes)trak_boxes = find_boxes(f,
moov_boxes[b"trak"][0]+8, moov_boxes[b"trak"][1])
print(trak_boxes)
udta_boxes = find_boxes(f, moov_boxes[b"udta"][0]+8,
moov_boxes[b"udta"][1])
print(udta_boxes, end="\n\n")

Листинг 1 – Диагностика структуры MP4-файла

Для получения информации о кодеке видео в исходный код была

добавлена функция find_stsd, анализирующая содержимое атома stsd.

Этот атом содержит сведения о параметрах сжатия, используемом ко-

деке и других характеристиках видеопотока. Доступ к этим данным ва-

жен при конвертации мультимедийных файлов, поскольку он позво-

ляет определить, какие параметры кодека необходимо адаптировать.

Анализ атома stsd представлен в листинге 2.

f.seek(stsd_start)
stsd_data = f.read(stsd_end - stsd_start)
version = stsd_data[0]
entry_count = int.from_bytes(stsd_data[4:8], "big")
print(f"'stsd' Box Info: Version={version}, Entry Count={en-
try_count}")
offset = 8 for i in range(entry_count):

214

sample_description_size = int.from_bytes(stsd_data[off-
set:offset + 4],"big")
sample_type = stsd_data[offset + 4:offset + 8]
print(f"Sample {i + 1}: Size={sample_description_size},
Type={sample_type.decode('utf-8')}")
offset += sample_description_size

Листинг 2 – Анализ атома stsd

Кроме функций анализа, в исходный код также были добавлены

инструменты для управления файлами. В частности, функция copy_file,

часть которой представлена в листинге 3, выполняет копирование ви-

деофайла из одной директории в другую и возвращает его содержимое

в виде переменной. Этот механизм полезен при автоматизированной

обработке видео, конвертации и интеграции медиаконтента в игровые

файлы.

if test_files:
if not os.path.exists(output_dir):
os.makedirs(output_dir)
for test_file in test_files:
output_file_path = os.path.join(output_dir, test_file)
test_dir_copy = os.path.join(test_dir, test_file)
print(output_file_path)
print(test_dir_copy)
file_data = copy_file_to_variable_and_output(test_dir_copy,
output_file_path)
if file_data:
examine_mp4(test_dir_copy)
print(f"File copied: {output_file_path}", end="\n\n")else:
print("Can't copy file", end="\n\n")

Листинг 3 – Копирование видеофайла

На рис. 1 отображен результат выполнения программного кода,

представленного выше, получающего информацию из видеоролика,

имеющего расширение mp4.

Рисунок 1 – Полученная информация из тестируемого видеоролика

215

Любая программа, независимо от уровня ее проработки, может
содержать узкие места, которые снижают производительность, ограни-
чивают гибкость или делают код уязвимым к ошибкам. Рассматривае-
мый код также имеет ряд узких мест, устранение которых позволит по-
высить его надежность, масштабируемость и производительность:

- неэффективная работа с памятью, что неэффективно для боль-
ших видеофайлов;

- недостаточная проверка структуры MP4-файла;
- жестко заданные значения, что снижает гибкость программы;
- ограниченное обрабатывание иерархии боксов. Код предпола-

гает фиксированную иерархию боксов без учета вложенных структур;
- ограниченная поддержка треков.
Анализ и обработка данных контейнеров MP4 играют ключевую

роль в современном мультимедийном контенте, обеспечивая эффектив-
ную работу с видео- и аудиофайлами. Представленный программный
код выполняет функции извлечения данных и анализа структуры MP4,
что облегчает процесс декодирования и перекодирования. Однако в те-
кущей реализации есть несколько узких мест, которые могут ограничи-
вать производительность и стабильность программы. Внедрение улуч-
шений значительно повысит функциональность кода.

ЛИТЕРАТУРА

1. Обухова Е.В., Шутько Н.П. Сравнительный анализ алгоритмов
видеокодирования THEORA, MPEG-4 и H.263 / Е.В. Обухова,
Н.П. Шутько // Наука и творчество: вклад молодежи: материалы меж-
дународной молодежной научно-практической конференции студен-
тов, аспирантов и молодых ученых, Махачкала, 19-20 ноября
2024 г. – Махачкала, 2024 (в печати).

2. Examine MP4 files with Python only [Электронный ресурс] //
Kaggle. – URL: https://www.kaggle.com/code/humananalog/examine-mp4-
files-with-pyhon-only (дата обращения: 02.02.2025).

УДК 004.42

Я.А. Игнаткова, ст. преп.; А.Н. Шербакова ст. преп.
(БГТУ, г. Минск, РБ)

ТРЕНДЫ ВЕБ-ДИЗАЙНА В 2025 ГОДУ

Веб-дизайн является динамичной сферой, где ежегодно возни-
кают новые тенденции, существенно изменяющие способы взаимодей-
ствия пользователя с веб-ресурсами. В 2025 году наблюдается эволю-
ция ключевых аспектов веб-дизайна, среди которых можно выделить

