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взаимодействия с цифровыми технологиями. Применение ML в обра-

зовательных и мобильных приложениях, а также на платформе 

Windows, продолжит трансформировать эти области, делая их более 

интуитивными и адаптивными к потребностям пользователей. 
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СОЗДАНИЕ АЛГОРИТМА ВЕКТОРНОЙ БАЗЫ 
РАСПОЗНАВАНИЯ ЛИЦ ЛЮДЕЙ СВЕРТОЧНОЙ 

НЕЙРОННОЙ СЕТИ  

Алгоритмы распознавания лиц позволяют автоматически иден-
тифицировать или верифицировать человека по его изображению. Про-
цесс распознавания включает несколько этапов:  

1. Обнаружение лица.  
2. Выделение ключевых точек (минимум 68).  
3. Нормализация изображения.  
4. Построение вектора признаков.  
5. Сравнение с базой данных.  
Для более сложных задач распознавания лиц в робототехнике, 

где требуется высокая точность и устойчивость к различным условиям, 
используются методы на основе глубокого обучения, такие как свер-
точные нейронные сети (CNN). CNN обеспечивают высокую точность 
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распознавания лиц, но требуют значительных вычислительных ресур-
сов для обработки изображений, особенно при использовании глубоких 
архитектур. Высокие вычислительные затраты CNN приводят к увели-
ченному энергопотреблению, что может быть критичным для автоном-
ных роботов с ограниченным энергоресурсом [1]. Однако использова-
ние специализированных аппаратных ускорителей, таких как TPU или 
FPGA, может повысить энергоэффективность [2].  

Создание и обработка векторной базы данных лиц являются клю-
чевыми этапами в системах распознавания лиц, где важны точность, 
скорость и масштабируемость. Для представления лица в виде вектора 
используются алгоритмы, способные выделять уникальные характери-
стики лица. Перед векторизацией изображения лиц обычно проходят 
этапы предобработки, включая выравнивание по ключевым точкам 
(например, глаза, нос, рот) и нормализацию освещения, чтобы умень-
шить влияние внешних факторов.  

Метод главных компонент (PCA) используется для снижения раз-
мерности данных и выделения наиболее значимых признаков лица. Он 
преобразует исходные данные в новую систему координат, где первые 
компоненты содержат наибольшую дисперсию данных. Формально, 
если X — матрица данных, то PCA находит такие собственные векторы 
и собственные значения ковариационной матрицы XTX, которые ис-
пользуются для проекции данных в пространство меньшей размерно-
сти.  

Линейный дискриминантный анализ (LDA) используется для по-
иска линейных комбинаций признаков, которые лучше всего разделяют 
классы (различные лица). Он стремится максимизировать межклассо-
вую дисперсию и минимизировать внутриклассовую дисперсию. Фор-
мула критерия Фишера для LDA:  
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где: W – матрица проекции; SB – матрица межклассовой дисперсии; 
SW – матрица внутриклассовой дисперсии. 

CNN обучаются на больших наборах данных для автоматиче-
ского извлечения признаков и преобразования изображений лиц в век-
торы признаков. Функция потерь, такая как триплетная потеря (triplet 
loss), используется для обучения модели, чтобы расстояние между век-
торами одного лица было меньше, чем между векторами разных лиц.  

Для эффективного поиска в большой базе данных лиц использу-
ются структуры данных, такие как деревья KD или LSH (Locality-
Sensitive Hashing), которые позволяют быстро находить ближайших со-
седей в векторном пространстве [3]. При увеличении числа лиц в базе 
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данных важно обеспечивать масштабируемость системы. Распределен-
ные вычисления и параллельная обработка могут быть использованы 
для ускорения процесса распознавания. Система должна поддерживать 
динамическое добавление новых лиц и обновление векторов признаков 
без значительного снижения производительности. Создание и обра-
ботка векторной базы данных лиц требуют применения эффективных 
алгоритмов извлечения признаков, методов снижения размерности и 
стратегий масштабируемости для обеспечения точного и быстрого рас-
познавания лиц в робототехнических системах.  

Этапы машинного обучения в CNN:  
1. Обучение модели:  
 a. Прямое распространение (forward pass).  
 b. Вычисление функции потерь.  
 c. Обратное распространение.  
2. Архитектура сети:  
 a. Сверточные слои (convolutional layers).  
 b. Слои подвыборки (pooling layers).  
 c. Полносвязные слои (fully connected layers).  
3. Формулы: 
 a. Операция свертки: Для входного изображения   и филь-

тра ! результат свертки " в позиции (#, $) вычисляется как:  

( , ) ( , ) ( , )
m n

S i j I i m j n K m n= + + ×å å . 

 b. Функция активации (например, ReLU): применяется эле-

мент-wise:  

f(x) = max (0, x). 

 c. Функция потерь (например, кросс-энтропия): для истин-

ной метки   и предсказанной вероятности !:  

 log( )
i ii

L y p= -å . 

CNN хорошо масштабируются на больших наборах данных и мо-

гут быть адаптированы для работы с высокоразмерными входными 

данными. Использование современных графических процессоров 

(GPU) и распределенных вычислительных систем позволяет эффек-

тивно обучать глубокие сети с миллионами параметров. Кроме того, 

существуют предобученные модели, такие как VGG, ResNet и 

Inception, которые можно дообучать под конкретные задачи, что уско-

ряет процесс разработки и снижает требования к вычислительным ре-

сурсам.  
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ОСОБЕННОСТИ ЦВЕТОВОСПРИЯТИЯ  
БЕЗОПАСНОЙ ГАММЫ 

Безопасная цветовая гамма считается хорошо воспроизводимой 

на любом дисплее и определяет видимые web-цвета с шагом уровня 

квантования 51, или в 16-ричной системе счисления #33. Теоретиче-

ской основой такой градации явилось математическое разделение диа-

пазона уровней квантования для глубины цвета 8 бит/канал в цветовой 

модели RGB. Это было оправдано с точки зрения увеличения разницы 

между цветами, но не учитывало особенности нашего восприятия.  

Если рассматривать определенные диапазоны цветов, то одина-

ковое изменение уровней квантования в них может не приводить к су-

щественному цветовому различию. Есть цвета, хорошо различимые 

глазом и цвета, для которых даже существенное отклонение не приво-

дит к его изменению. К цветам, являющимся плохо различимыми в 

первую очередь можно отнести светлые тона зеленого, голубого, пур-

пурного, некоторые оттенки красного и синего. Это явление известно 

давно. Исследования М. Аддама, Д. Джадда и Г. Вышэцки доказали, 

что воспринимаемый и измеренный цвета отличаются [1]. Причем вос-

принимаемый цвет на диаграмме цветности сводится к форме эллипса, 

в пределах которого значения носят переменный характер, а цветность 

неизменна.  

Для оценки воспроизводимости безопасной цветовой гаммы в 

программе Adobe Photoshop было воспроизведено фотометрическое 


