
181

Разработанный программный комплекс зарегистрирован в госу-

дарственном реестре программ для ЭВМ [3], позволяет выполнять де-

шифрирование графической информации, формируемой сканерными

ТПВ-системами непосредственно в процессе выполнения съемочных

работ, и может быть включен в состав автоматизированных систем об-

работки информации бортовой съемочной аппаратуры, что позволит

повысить эффективность применения сканерных ТПВ-систем за счет

повышения оперативности выполнения задач.

ЛИТЕРАТУРА

1. Saito T., Rehmsmeier M. The precision-recall plot is more informa-

tive than the ROC plot when evaluating binary classifiers on imbalanced da-

tasets // PLoS One. 2015. 10,3: e0118432

2. Mark Everingham, S. M. Ali Eslami, Luc Van Gool, Christopher K.

I. Williams, John Winn, Andrew Zisserman. The Pascal Visual Object Clas-

ses Challenge – a Retrospective // International Journal of Computer Vision

manuscript No. 111, 98-136 (2015). doi:10.1007/s11263-014-07335.

3. Свидетельство о государственной регистрации программы для

ЭВМ 2023611283 РФ. Программа автоматизированной обработки гра-

фической информации / Мингалев А.В., Белов А. В., Габдуллин И. М.,

Марданова Д. А, заявитель и правообладатель Акционерное общество

«Научно-производственное объединение «Государственный институт

прикладной оптики».

УДК 004.658.3

М.В. Ворончихин, асп.,

Н.А. Галанина, проф., д-р техн. наук
(ЧувГУ, г. Чебоксары, Россия)

МЕТОДЫ ОПТИМИЗАЦИИ СТРУКТУРЫ ОТЕЧЕСТВЕННЫХ

БАЗ ДАННЫХ НА ОСНОВЕ POSTGRESQL

После выполнения миграции на отечественную СУБД на основе

PostgreSQL важной задачей становится оптимизация структуры баз

данных с целью повышения производительности и ускорения выполне-

ния существующих бизнес-запросов на новой СУБД. Даже если вся ло-

гика приложения корректно работает на мигрированной СУБД, не бу-

дет лишним учесть все особенности PostgreSQL, чтобы дополнительно

ускорить выполнение запросов и избавиться от «узких мест» в мигри-

рованной базе данных. Применение специфичных приемов оптимиза-

ции в PostgreSQL включает в себя не только традиционные методы ин-

182

дексирования и нормализации, но и более специализированные под-

ходы, предназначенные для увеличения эффективности хранения и об-

работки данных [1].

Для оценки эффективности предложенных методов оптимизации

структуры баз данных было проведено их экспериментальное тестиро-

вание на тестовых данных, хранящихся на отечественной СУБД на ос-

нове PostgreSQL. Будем смотреть на скорость выполнения запросов и

на размер таблиц до и после выполнения данных оптимизаций, а также

рассмотрим влияние предложенных методов на производительность

системы.

1. Оптимизация типов данных (снижение избыточности). При

оптимизации структуры баз данных после миграции на PostgreSQL осо-

бое внимание должно уделяться корректному подбору типов данных

для каждого столбца таблицы. Важно обеспечить баланс между эффек-

тивным использованием дискового пространства и гарантией, что диа-

пазон значений для выбранного типа данных будет полностью покры-

вать все возможные значения, необходимые для работы системы.

Например, вместо использования bigint, который занимает больше

памяти, целесообразно использовать smallint, если значения в

столбце ограничены меньшим диапазоном [2]. Также стоит учитывать

использование типа boolean для хранения логических значений, что

позволяет сэкономить место по сравнению с использованием других

типов данных, таких как char (1).

Пример:
-- До оптимизации:
CREATE TABLE payments_v1 (id serial PRIMARY KEY, number int,
status int);

-- После оптимизации:
CREATE TABLE payments_v2 (id serial PRIMARY KEY, number
smallint, status boolean);
-- Перенос данных

INSERT INTO payments_v1 (number, status)
SELECT number, status

FROM etalon_data;
INSERT INTO payments_v2 (number, status)

SELECT number, (status = 1)::boolean
FROM etalon_data;

Результаты:

- уменьшение размера таблицы на 25%: со 121 Мб до 91 Мб;

- ускорение запроса на 31%: с 4 сек. 026 мс. до 2 сек. 769 мс.

Однако стоит отметить, что изменение типа данных столбцов с

числового на логический может повлечь за собой необходимость кор-

ректировки логики системы. Это связано с тем, что такие изменения

183

требуют адаптации запросов, хранимых процедур и функций, которые

используют эти столбцы.

2. Манипулирование положением столбцов переменной

длины. Оптимизация структуры таблицы включает в себя не только

выбор типов данных, но и порядок размещения столбцов внутри строки

таблицы. Несмотря на то, что с теоретической точки зрения столбцы в

реляционных таблицах не упорядочены, на практике каждая СУБД со-

храняет строки таблицы и столбцы внутри строк в определённой после-

довательности, обычно соответствующей порядку их объявления в

скрипте создания таблицы.

Если обратиться к особенностям реализации PostgreSQL, можно

отметить, что сначала в таблицы рекомендуется размещать столбцы

фиксированной длины (например, integer, boolean), а уже за ними

располагать столбцы переменной длины (например, текстовые поля:

text, varchar). Такое расположение позволяет СУБД быстрее рас-

считывать смещения столбцов относительно начала строки при чтении

данных.

В добавление, если столбцы переменной длины часто содержат

значения NULL или значения по умолчанию, то их размещение в конце

таблицы позволяет системе не хранить эти данные физически, тем са-

мым уменьшая общий размер таблицы на диске.

Пример:
-- До оптимизации
CREATE TABLE payments_v1 (id serial PRIMARY KEY, name
varchar(100), address varchar(255), status int);
-- После оптимизации

CREATE TABLE payments_v2 (id serial PRIMARY KEY, status int,
name varchar(100), address varchar(255));
-- Перенос данных

INSERT INTO payments_v1 (name, address, status)
SELECT name, address, status
FROM etalon_data;
INSERT INTO payments_v2 (status, name, address)

SELECT status, name, address
FROM etalon_data;

Результаты:

- уменьшение размера таблицы на 14%: со 177 Мб до 153 Мб;

- ускорение запроса на 23%: с 5 сек. 129 мс до 3 сек. 962 мс.

3. Выравнивание столбцов типа integer. Размещение столбцов

внутри таблицы влияет на эффективное использование памяти и про-

изводительность. Одной из важных особенностей PostgreSQL является

выравнивание столбцов определённых типов, таких как integer, по

ширине 4-байтового слова. Это означает, что данные таких столбцов

184

располагаются в памяти на границах, кратных 4 байтам, для ускорения

доступа и обработки. Однако чередование типов данных, таких как

boolean и integer, приводит к неэффективному использованию па-

мяти.

Для минимизации этих потерь рекомендуется группировать

столбцы одного типа, особенно столбцы с выравниванием, такие как

integer. Это позволяет уменьшить общий размер таблицы, а значит,

ускорить доступ к данным.

Пример:
-- До оптимизации:
CREATE TABLE payments_v1 (id serial PRIMARY KEY, is_active
boolean, number int);

-- После оптимизации
CREATE TABLE payments_v2 (id serial PRIMARY KEY, number int,
is_active boolean);
-- Перенос данных

INSERT INTO payments_v1 (is_active, number)
SELECT is_active, number
FROM etalon_data;

INSERT INTO payments_v2 (number, is_active)
SELECT number, is_active
FROM etalon_data;

Результаты:

- уменьшение размера таблицы на 17%: со 119 Мб до 99 Мб;

- ускорение запроса на 18%: с 3 сек. 821 мс. до 3 сек. 143 мс.

Таким образом, можно сделать вывод, что предложенные методы

подтвердили свою эффективность и могут быть рекомендованы для

применения в реальных отечественных базах данных, основанных на

PostgreSQL, для достижения оптимальных результатов производитель-

ности в процессе их эксплуатации.

ЛИТЕРАТУРА

1. Как ускорить работу PostgreSQL с помощью конфигурации

базы и оптимизации запросов [Электронный ресурс] // Хабр : [сайт].

[2022]. URL: https://habr.com/ru/companies/slurm/articles/684826/ (дата

обращения: 03.01.2025).

2. Оптимизация хранения данных в PostgreSQL [Электронный

ресурс] // Хабр : [сайт]. [2024]. URL:

https://habr.com/ru/companies/bercut/articles/859700/ (дата обращения:

03.01.2025).

