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ЧЕРЕЗ ДВУХРЯДНЫЙ ПУЧОК ОРЕБРЕННЫХ ТРУБ

Представлены результаты исследования влияния вытяжной шахты на локальный и интегральный те­
плообмен при термогравитационном течении воздуха через двухрядный пучок горизонтальных оребренных 
труб. Эксперименты по измерению интегральной теплоотдачи были выполнены для двух конфигураций 
с фиксированными геометрическими параметрами пучка: с размещением над пучком вытяжной шахты 
высотой, на порядок превышающей диаметр ребер, и без вытяжной шахты. Трехмерное численное моде­
лирование проведено на основе решения нестационарных уравнений Навъе-Стокса, в предположении пери­
одичности течения с шагом установки ребер. Получены согласованные данные расчетов и экспериментов 
по значениям интегрального числа Нусселъта, показывающие, что установка вытяжной шахты влечет 
за собой увеличение числа Нусселъта до пяти раз. По результатам численного моделирования выполнен 
анализ структуры течения в межреберном пространстве и локальных характеристик теплоотдачи.
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Введение. Аппараты и теплообменники воздушного охлаждения (ТВО) разнообразных конструкций, 
функционального назначения и энергетической эффективности применяются во многих отраслях про­
мышленности и в быту [1—3]. Расширение практического использования теплоотводящих устройств дан­
ного типа обосновывается их экологичностью, широким диапазоном рабочих температур, повсеместной 
и неограниченной доступностью охлаждающей среды, а также проблемами с коррозией и очисткой, кото­
рые возникают при использовании в качестве хладагента воды.

Основным конструктивным элементом ТВО является теплообменная секция в виде трубного пучка, 
который может иметь разную пространственную ориентацию и компоноваться с образованием одного, а 
чаще нескольких рядов труб с шахматным или коридорным расположением. Повышение эффективности 
ТВО достигается при многократном увеличении площади наружной поверхности труб путем нанесения 
внешнего оребрения.

Обтекание трубного пучка может происходить в условиях вынужденной, свободной или смешанной 
конвекции. Наиболее распространены ТВО, эксплуатируемые при вынужденно-конвективном режиме, 
который обеспечивает наилучшие характеристики теплоотдачи. Вместе с тем при работе ТВО в условиях 
свободной конвекции не требуется применять специальные меры для поддержания и регулирования пото­
ка охладителя вентиляторами, что способствует энергосбережению и уменьшению шумового воздействия 
на окружающую среду. Тепловая мощность ТВО с естественно-конвективным теплоотводом может быть 
повышена установкой над трубным пучком вытяжной шахты.

На протяжении долгого времени при проведении исследований, формирующих основы расчета и про­
ектирования ТВО, использовались преимущественно инженерные подходы, базирующиеся на накоплен­
ном обширном эмпирическом материале по теплоаэродинамическим характеристикам труб и пучков [1,2].
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11рименительно к проблеме расчета ТВО, работающих в условиях свободной конвекции, основной задачей 
являлась формулировка аналитических или полуэмпирических выражений для оценки среднего коэффи­
циента теплоотдачи (или числа Нуссельта (Nusselt) Nu) в зависимости от числа Релея (Rayleigh) Ra (или 
I расгофа (Grashof) Gr), геометрических параметров трубных конфигураций и оребрения. В последние 
десятилетия получили развитие экспериментальные методики, а также приближающиеся к ним по досто­
верности и обладающие повышенной информативностью результатов методы численного моделирования.

Аналитические работы, эксперименты и обобщения имеющихся данных по обозначенной проблеме 
систематически проводятся, начиная с середины прошлого века, в большей мере для одиночных оребрен- 
пых труб (например, [4-6]). На основе измерений предложены обобщенные критериальные уравнения 
для нахождения среднего числа Нуссельта в зависимости от геометрических параметров и числа Релея. В 
качестве геометрических параметров в соотношения включаются диаметры несущей трубы и ребер, рас­
стояние между ребрами (или шаг), а также формируемые из них безразмерные комплексы [7].

Ряд экспериментальных исследований был посвящен пучкам, состоящим из промышленных оребрен- 
мых труб и находящихся в относительно свободном пространстве [8-11]. В экспериментах в приближен­
ных к практике условиях изучалось влияние на теплоотдачу перепада температуры между поверхностью 
труб и окружающим воздухом, продольных и поперечных расстояний между трубами, числа трубных 
рядов и расположения ряда, угла наклона труб, коэффициента оребрения.

Влияние вытяжной шахты на теплообмен при термогравитационном течении воздуха через одно- и 
мпогорядные пучки оребренных труб со спиральными ребрами экспериментально изучалось в работах 
112 14]. Трубы имели коэффициент оребрения 21, диаметр труб и ребер составлял 26 и 56 мм, шаг ребра 
7.43 мм. В частности, в работе [12] объектом изучения был двухрядный пучок с равносторонней компо­
новкой труб. Было установлено, что теплоотдача при установке над пучком вытяжной шахты в несколько 
раз превышает измеренную теплоотдачу при отсутствии шахты. Показана эффективность установки в 
вытяжной шахте вертикальных перегородок; предложены экспериментальные зависимости Nu от Gr для 
каждого ряда труб при организации течения через пучок с вытяжной шахтой и без нее. В работах [13, 14] 
рассматриваются вопросы повышения эффективности ТВО путем оптимизации высоты ребер и попереч­
ного шага труб в пучках с разным числом рядов и коэффициентом оребрения. Приводятся эксперимен­
тальные данные по влиянию на теплоотдачу геометрических параметров оребрения, расстояния между 
I рубами, числа рядов, угла наклона труб, высоты и формы выходного сечения вытяжной шахты.

В работе [15] представлены результаты экспериментов для многорядных шахматных пучков плоско­
овальных труб с различной формой оребрения, размещенных в высокой (6.5 м) вытяжной трубе. Размеры 
большой и малой осей труб составляли 30 и 15 мм, ребра имели высоту 17 мм и устанавливались с шагом 
5 мм. Продольный и поперечный шаги труб составляли 68 и 53 мм. Показано, что двухрядная конфигу­
рация обеспечивает более высокую тепловую мощность в сравнении с трехрядной, с доминированием 
вклада нижнего ряда. Предложена корреляционная зависимость для Nu как функции от чисел Релея Ra и 
11рандтля (Prandtl) Рг, учитывающая также влияние конструкции пучка и номера ряда.

Методы вычислительной гидродинамики стали применяться к задачам термогравитационного тече­
ния воздуха в пучках оребренных труб относительно недавно. Расчеты проводились преимущественно 
для случая одиночных оребренных труб и в стационарной постановке [16-18]. Численное моделирова­
ние выполнялось с применением коммерческих кодов (ANSYS Fluent/CFX), а также открытого пакета 
( >penFOAM с использованием схем пространственной дискретизации второго порядка при типичном раз­
мере расчетных сеток 0.5-2 млн ячеек. В расчетах варьировались значения режимных критериев подобия 
ц геометрических параметров труб и ребер. Акцент делался на возможную последующую оптимизацию 
конструктивных решений и условий эксплуатации для улучшения теплоотводящих свойств с учетом пере­
пада температур, диаметра труб и ребер и расстояния между ребрами.

Число опубликованных работ, посвященных численному моделированию течения и теплообмена через 
трубные пучки с вытяжной шахтой, крайне мало. В работах [19,20] представлены результаты трехмерного 
моделирования для многорядных пучков, расположенных в нижней части шахты и сконструированных
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из труб с разной формой поперечных ребер (круглых и овальных). Стационарные расчеты с учетом 
предположенной возможности перехода в шахте к турбулентному режиму движения воздуха проводи­
лись на основе метода RANS- (Reynolds Averaged Navier-Stokes) и SST- (Shear Stress Transport) модели 
турбулентности на сетках, содержащих около 4 млн элементов; использовался пакет ANSYS CFX. Варьи­
ровались разность температур, количество рядов и расстояние между трубами, а также высота шахты. 
Расчеты для случая овальных ребер [ 19] показали, в частности, что увеличение высоты шахты от 2 до 16м 
приводит к росту Nu более чем на 30%. Была также определена оптимальная высота шахты (11 м): при 
дальнейшем увеличении высоты ее влияние на характеристики теплоотдачи становится несущественным.

Таким образом, объем данных, характеризующих влияние вытяжной шахты на тепловые процессы в 
пучках горизонтальных оребренных труб, весьма ограничен. Вместе с тем актуальность и практическая 
значимость исследований по рассматриваемой проблеме проистекает из необходимости интенсификации 
теплообмена в условиях термогравитационной конвекции при ощутимом повышении тепловой мощности 
ТВО такого класса.

В настоящей работе представляются результаты экспериментального и численного исследования вли­
яния вытяжной шахты на течение и теплообмен в двухрядном пучке с относительно тесным поперечным 
кольцевым оребрением. Рассмотрены две конфигурации —  без шахты и с шахтой, которая по высоте в де­
вять раз превосходит диаметр оребрения и содержит внутренние вертикальные (разделительные) перего­
родки. Проводится сопоставление чисел Нуссельта (в зависимости от числа Грасгофа), полученных в насто­
ящих расчетах при решении трехмерных уравнений Навье-Стокса (Navier-Stokes) и в экспериментах [12]. 
По результатам численного моделирования выполняется анализ структуры течения в межреберном про­
странстве и локальных характеристик теплоотдачи.

Геометрические характеристики экспериментальных конфигураций. Рассматриваются течение 
и теплообмен в горизонтальном пучке, состоящем из двух рядов оребренных труб (индекс j  —  номер 
ряда, у = 1 , 2 ) ,  которые расположены в шахматном порядке (рис. 1, а). Геометрические параметры пучка
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Рис. 1. Общий вид двухрядного пучка труб (а); геометрические характери­
стики пучка (6, в); фотографии экспериментальной установки для проведения 
измерений без шахты (г) и с шахтой (4); схемы расчетных областей для моде­
лирования конвекции в конфигурациях без шахты (е) и с шахтой (ж)
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Для выполнения расчетов использовался пакет ANSYS Fluent 2019 R3. Расчеты на неструктурирован­
ных сетках с гексаэдральными элементами проводились со вторым порядком точности по пространству и 
времени; для аппроксимации конвективных потоков использовалась противопоточная схема второго по­
рядка. Расчетные сетки включали около 350 тыс. ячеек, достаточность размерности данной сетки была 
установлена в результате исследования сеточной чувствительности решения. Шаг по времени принимал­
ся равным 0.02 с, что составляет около 0.1 характерных времен, оцениваемых по скорости плавучести 
Fb = (g£rdо)0'5, где параметр плавучести равен Zj=  AT/Tq. Продолжительность выборок, соответствующих 
статистически установившемуся режиму течения, составляла около 200 с, что для всех вариантов превы­
шало 1000 характерных времен.

Результаты расчетов и обсуждение. Приводимые ниже результаты относятся к осредненным по вре­
мени параметрам течения и характеристикам теплообмена.

Структура течения, рассчитанная для двух конфигураций при задании в обоих случаях перепада тем­
ператур Т\ -  7о =  60°С, иллюстрируется на рис. 2. В сечении, проходящем через срединное сечение межре­
берного пространства, показаны линии тока, поля модуля безразмерной скорости, отнесенной к скорости 
плавучести = 0.27 м/с, а также поля обезразмеренной температуры Т* = (Г -  Т0)/(Т2 -  Го). Значения 
числа Грасгофа для этих вариантов близки к 2 • 105, при этом перепад температур Г2 -  Го составляет 102°С 
в случае без шахты и 107°С для варианта с шахтой.

Видно, что под действием сил плавучести воздух протекает через межтрубное и межреберное про­
странство пучка, формируя восходящее подъемное течение. Локальные максимумы скорости наблюдают­
ся в зазорах между трубами, при этом в межреберном пространстве значения скорости существенно ниже 
(в 2 и более раз).

Рис. 4. Интегральные значения числа Нуссельта, вычисленные для каждой из 
труб при Gr = 2 • 105: вариант без шахты (а) и с шахтой (б)

0 I 2 Gr - КГ5 3

Без шахты
Эксперименты
Расчеты

С шахтой
Эксперименты
Расчеты

Рис. 5. Расчетные и экспериментальные зависимости среднего по трубам 
« 1 2  = 3 числа Нуссельта от числа Грасгофа
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В случае варианта без шахты над пучком формируется тепловой факел, сконцентрированный у пло­
скости симметрии пучка. Среднерасходная скорость на входе в пучок V-m составляет около 0.092Ft,, при 
этом максимальные значения скорости в пучке не превышают Ft,. Число Рейнольдса (Reynolds), оцени­
ваемое по формуле Re = ГцДуА, составляет 41. При наличии шахты течение через пучок существенно 
интенсивнее, как и ожидалось в области над пучком, менее сконцентрировано —  у плоскости симметрии. 
В этом случае среднерасходная скорость на входе в пучок Vm = 0.47 V^, а число Рейнольдса Re = 210. 
Максимальные значения скорости в пучке существенно превышают Ft,.

Анализ расчетных данных для варианта без шахты показывает, что изменение температуры вдоль оси 
трубы (поперек межреберного пространства) пренебрежимо мало. Температура воздуха в межреберном 
пространстве близка к температуре основания несущей трубы (отличие не более 0.5°С в нижней части 
ребра). Изменение температуры в пучке прослеживается лишь в межтрубных зазорах. В варианте с шах­
той в нижней области ребер второго ряда труб участок с существенным отличием температуры воздуха 
в межреберном пространстве от температуры стенки занимает около половины высоты ребра. При этом 
температура на поверхности ребра в месте натекания отличается на 3.4°С от температуры несущей трубы.

На рис. 3 приведены распределения значений локального числа Нуссельта Nu]oc = 7 w,locd(/^(Ts -  Tref) 
по поверхности ребер, рассчитанные при Gr = 2 • 105 для двух вариантов задачи. Коэффициент те­
плопроводности рассчитывался по температуре окружающей среды (принималось значение X = 
= 0.0261 Вт/(м • К)). В качестве характерной температуры Гге)- воздушного потока, набегающего на трубы 
первого ряда, принималось значение температуры окружающей среды Го, а для второго ряда —  средне­
массовая температура потока в зазоре между рядами труб, которая оценивалась из балансового соотно­
шения по формуле Ггеf = Q\l(CpG) + Tq, где Q\ —  общий теплосъем с первого ряда пучка, G —  расход, 
проходящий через пучок.

Анализ приведенных на рис. 3 данных позволяет заключить, что в случае без шахты эффективность 
использования ребер очень низкая: теплосъем в основном осуществляется с периферии ребер. В случае с 
шахтой ситуация заметно улучшается, однако и в этом случае процент "работающей" поверхности ребер 
невысок, составляя 15-25% в зависимости от положения трубы.

На рис. 4 показаны интегральные значения числа Нуссельта Nu,„ рассчитанные при Gr = 2 • КР для 
каждой из обогреваемых труб. Эти значения вычислены по формуле Nu„ = {qwn)do/X(Tj -  Tref) , j  = 1 , 2 ,  где 
(<7w,п) —  осредненный по поверхности труб тепловой поток. Видно, что наибольшее изменение Nu„ по вто­
рому ряду труб в случае варианта с шахтой составляет 25% (относительно значения для центральной тру­
бы): для крайней трубы значение Nu„ ниже, чем для центральной. В противоположность этому в случае без 
шахты крайняя труба второго ряда работает несколько эффективнее (на 15%). В целом же установка шахты 
приводит к существенному увеличению осредненного по поверхности труб коэффициента теплоотдачи.

На рис. 5 для исследованного диапазона значений числа Грасгофа приведены результаты расчетов и 
экспериментов по определению числа Нуссельта, среднего по двум центральным трубам (служивших в 
эксперименте калориметрами, ицj  = 3). Согласно [12], это число определялось как Nu = qwd()/X(r w -  Го), 
где, как и ранее, Tw = 0.5(Гj т  Г?), а тепловой поток рассчитывается как q,v 0.5((;у,,_з)|у ] - ( ,q ,3>!/=2)- 
Из представленного сопоставления можно заключить, что в целом получена вполне удовлетворительная 
согласованность расчетных и экспериментальных данных: различия не превышают 15%. Можно видеть 
также, что в рассмотренном диапазоне изменения Gr установка вытяжной шахты с вертикальными пере­
городками позволила увеличить теплоотдачу двухрядного пучка до пяти раз.

Заключение. Получены новые данные о влиянии вытяжной шахты с внутренними вертикальными 
перегородками на локальный теплообмен и структуру термогравитационного течения, формирующего­
ся при прохождении воздухом двухрядного пучка, состоящего из расположенных в шахматном порядке 
горизонтальных оребренных труб. Данные по интегральной теплоотдаче, полученные в экспериментах 
и расчетах с охватом диапазона чисел Грасгофа порядка 104— 105, находятся в хорошем согласии и указы­
вают на существенную интенсификацию течения и теплообмена (до пяти раз) при установке вытяжной 
шахты, высота которой на порядок превосходит диаметр оребрения.
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ВЛИЯНИЕ ВЫТЯЖНОЙ ШАХТЫ С РАЗДЕЛИТЕЛЬНЫМИ ПЕРЕГОРОДКАМИ

Показано, что для двухрядного пучка, собранного из небольшого числа труб в каждом ряду, средний 
коэффициент теплоотдачи с поверхности отдельных труб ряда может существенно отличаться. Так, для 
варианта без шахты теплоотдача от центральной трубы второго ряда исследованного пучка ниже, чем от 
крайней (боковой) на 15%, а в случае с шахтой, наоборот, выше на 25%. В случае без шахты эффектив­
ность использования ребер принятых размеров и шага установки очень низкая: теплосъем в основном 
осуществляется с периферии ребер. В случае с шахтой ситуация заметно улучшается, однако и в этом слу­
чае доля поверхности ребер, вносящая вклад в интенсификацию, невысока: при значениях числа Грасгофа 
порядка 105 она составляет лишь 15-25% в зависимости от положения трубы.

Исследование выполнено за счет средств гранта Российского научного фонда (№ 24-49-10003, https:// 
rscf.ru/project/24-49-10003/) совместно с Белорусским республиканским фондом фундаментальных ис­
следований (грант № Т23РНФМ-005). Расчеты проведены с использованием вычислительных ресурсов 
суперкомпьютерного центра "Политехнический" Санкт-Петербургского политехнического университета 
Петра Великого (https://scc.spbstu.ru).

Обозначения

Ср — удельная теплоемкость, Дж/(кг • К); d — диаметр ребра, мм; do — диаметр внешней поверхности несущей 
трубы, мм; F — площадь теплоотдающей поверхности трубы, м ; g  — ускорение свободного падения, м/с , G — рас­
ход, проходящий через пучок, кг/с; Gr — число Грасгофа; Н — высота вытяжной шахты, мм; Л — высота ребра, мм; 
L — длина оребренной трубы, м; Nj — число труб в ряду /; N и — число Нуссельта; Nuioc — локальное число Нуссель-
та; Nu„ — интегральное число Нуссельта; и,- — номер трубы в ряду; О — мощность, Вт; Q, — общий теплосъем с ряда2 J 2 Jj, Вт; qw — тепловой поток, Вт/м-; qw |ос — локальный тепловой поток, Вт/м ; (qw „) — осредненный по поверхности 
труб тепловой поток, Вт/м ; Re — число Рейнольдса; S \>2 — поперечный и продольный шаги труб, мм; s — шаг реб­
ра, мм; Т — осредненная по времени температура, °С; Т* —• безразмерная температура; Ts — локальная температура 
на поверхности ребра, °С; Ггеf — характерная температура, °С; Tw — средняя температура, °С; 7) — температура на 
внешней поверхности несущих труб, °С; Tq — температура окружающего воздуха, °С; V — осредненная по време­
ни величина скорости, м/с; Fj, — скорость плавучести, м/с; Vm — среднерасходная скорость на входе в пучок, м/с; 
x , y , z  — декартовы оси; а  — коэффициент теплоотдачи, Вт/(м • К); (3 — коэффициент теплового расширения, К , 
АТ— перепад температуры, °С; 8 — средняя толщина ребра, мм; <р — коэффициент оребрения; г,т— параметр плаву­
чести; v — кинематический коэффициент вязкости, м/с;  а ]2 — относительный поперечный и продольный шаг труб; 
А — коэффициент теплопроводности, Вт/(м • К). Индексы: 0 — окружающая среда; b — плаву честь;/ — номер ряда; 
1ос — локальный, loss — потери через торцы труб; total — полный; rad — лучистый; ref — характерный.
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