
156

УДК 004.4

Н.А. Горбунова, доц.; Н.Ю Фрицлер, студ.

(КарУ, г. Караганда, Казахстан)

АРХИТЕКТУРНЫЕ ПОДХОДЫ К РАЗРАБОТКЕ МОБИЛЬНЫХ

ПРИЛОЖЕНИЙ ДЛЯ ANDROID И IOS ПЛАТФОРМ

Разработка мобильных приложений для платформ Android и

iOS – одна из ключевых задач современного IT-сектора. Выбор архи-

тектуры играет важнейшую роль в обеспечении успешной реализации

проекта, влияя на такие аспекты, как производительность, удобство со-

провождения и масштабируемость. Учитывая различия между плат-

формами, разработчики сталкиваются с рядом вызовов, таких как необ-

ходимость учитывать особенности каждой системы, потребность в

кроссплатформенной совместимости и поддержке долгосрочного жиз-

ненного цикла приложения. Кроме того, архитектура определяет,

насколько легко можно будет интегрировать новые технологии, реаги-

ровать на изменяющиеся требования пользователей и поддерживать

высокое качество приложения на протяжении его жизненного цикла.

Эффективные архитектурные решения позволяют минимизировать за-

траты на разработку, оптимизировать процессы тестирования и развер-

тывания, а также обеспечивать надежную и стабильную работу прило-

жения в условиях интенсивного использования.

Современные мобильные приложения часто развиваются и об-

растают новыми функциями в процессе эксплуатации. Архитектура

должна обеспечивать возможность добавления новых модулей и ком-

понентов без значительных изменений существующего кода. Масшта-

бируемость особенно важна для крупных проектов, где изменения в од-

ной части приложения не должны нарушать работу других модулей.

Примером может служить использование многослойных архитектур,

таких как Clean Architecture, где каждый слой изолирован и отвечает за

строго определенные задачи. Такой подход облегчает внесение измене-

ний и позволяет равномерно распределять рабочую нагрузку между ко-

мандами разработчиков.

Учитывая высокий спрос на мобильные приложения, работаю-

щие на обеих основных платформах (Android и iOS), архитектура

должна предусматривать возможность повторного использования кода.

Это позволяет сократить время разработки и снизить затраты, не жерт-

вуя качеством продукта. Кроссплатформенные фреймворки, такие как

Flutter, React Native или Xamarin, предоставляют инструменты для со-

здания приложений, которые работают на обеих платформах. Однако

разработчики сталкиваются с необходимостью учитывать различия в

157

пользовательских интерфейсах и поведении систем, что требует гибких

архитектурных решений, поддерживающих адаптацию к платформен-

ным особенностям [1].

Пользовательский опыт во многом зависит от быстродействия и

стабильности приложения. Архитектура должна быть спроектирована

таким образом, чтобы эффективно использовать ресурсы устройства

(память, процессор, сеть) и минимизировать риски сбоев. Например,

использование паттернов управления состоянием, таких как Redux или

Bloc, помогает оптимизировать обработку данных в приложении,

предотвращая избыточное потребление ресурсов.

Качественное приложение требует регулярного обновления и ис-

правления ошибок, что делает процесс тестирования и поддержки важ-

ным аспектом разработки. Хорошо продуманная архитектура способ-

ствует модульному тестированию, позволяя изолировать и проверять

отдельные части системы. Например, при использовании архитектур-

ного подхода MVVM (Model-View-ViewModel) можно легко тестиро-

вать бизнес-логику и взаимодействие с данными, не затрагивая пользо-

вательский интерфейс. Это ускоряет процесс поиска ошибок и внедре-

ния новых функций [2].

Современная разработка мобильных приложений опирается на

различные архитектурные подходы, каждый из которых имеет свои

особенности, преимущества и области применения. Одним из самых

распространенных подходов является Model-View-Controller (MVC).

Этот подход предполагает разделение приложения на три ключевых

компонента: модель, представление и контроллер. Модель отвечает за

управление данными, представление отображает пользовательский ин-

терфейс, а контроллер обеспечивает взаимодействие между ними. Этот

подход широко используется благодаря своей простоте и структуриро-

ванности, однако он может приводить к избыточной связи компонентов

в крупных проектах, что затрудняет масштабируемость и поддержку.

Model-View-Presenter (MVP) является эволюцией MVC, где кон-

троллер заменяется презентером, который полностью управляет логи-

кой представления. Такой подход обеспечивает более четкое разделе-

ние обязанностей и делает код более тестируемым. MVP часто приме-

няется в проектах с высокими требованиями к тестированию и гибко-

сти пользовательского интерфейса.

Model-View-ViewModel (MVVM) стал популярным благодаря

своей способности упрощать привязку данных и взаимодействие

между пользовательским интерфейсом и логикой. Этот подход активно

используется в мобильной разработке, особенно в среде Android, где

фреймворки, такие как Jetpack, поддерживают его реализацию. MVVM

158

позволяет минимизировать дублирование кода и улучшает тестируе-

мость благодаря отделению логики представления от самой визуальной

части [3].

Clean Architecture – это многослойный подход, который обеспе-

чивает модульность и изоляцию различных уровней приложения. Ос-

новная идея заключается в разделении приложения на независимые

слои, такие как пользовательский интерфейс, бизнес-логика и слой дан-

ных. Это не только упрощает тестирование и поддержку, но и делает

приложение гибким к изменениям. Clean Architecture подходит для

крупных и долгосрочных проектов, где требования могут меняться на

протяжении всего цикла разработки.

Другие подходы, такие как Flux, Redux и микросервисная архи-

тектура, также нашли свое применение в мобильной разработке, осо-

бенно в приложениях, где требуется сложное управление состоянием

или высокая степень масштабируемости.

Разные архитектурные подходы имеют свои сильные и слабые

стороны, которые проявляются в зависимости от особенностей про-

екта. MVC, например, является одним из самых простых для освоения

и реализации, что делает его популярным выбором для небольших и

средних проектов. Однако в крупных приложениях он может приво-

дить к сильной связности компонентов, усложняя их поддержку и те-

стирование.

MVP превосходит MVC в вопросах четкого разделения логики и

тестируемости, что делает его подходящим для проектов, где бизнес-

логика играет ключевую роль. Тем не менее, управление большим ко-

личеством презентеров может усложнять разработку, особенно если

проект становится более масштабным.

MVVM предлагает удобную модель для обработки данных и их

отображения благодаря механизмам привязки, что особенно актуально

для платформ с поддержкой таких инструментов. Однако его реализа-

ция требует большего времени и ресурсов, что может быть нецелесооб-

разным для небольших приложений.

Clean Architecture, хотя и является наиболее гибким и модульным

подходом, имеет значительную сложность в реализации. Его преиму-

щество заключается в возможности изолировать бизнес-логику от

пользовательского интерфейса и слоя данных, что упрощает тестиро-

вание и адаптацию к изменениям. Однако для малых и краткосрочных

проектов его использование может быть избыточным.

В конечном итоге выбор архитектурного подхода зависит от мно-

жества факторов: размера команды, масштаба проекта, требований к

производительности, бюджета и срока реализации. Для небольших

159

проектов подходы вроде MVC или MVP могут быть достаточными, то-

гда как для более сложных и долгосрочных проектов MVVM или Clean

Architecture становятся более предпочтительными благодаря своей мо-

дульности и гибкости.

Современные подходы к архитектуре мобильных приложений ак-

тивно развиваются под влиянием новых технологий и меняющихся тре-

бований пользователей. Одним из ключевых трендов является исполь-

зование микросервисной архитектуры, адаптированной для мобильной

разработки. Такой подход подразумевает разделение приложения на

независимые модули, каждый из которых выполняет свою задачу. Это

позволяет улучшить масштабируемость и упростить внедрение новых

функций. Асинхронное программирование и управление состоянием

также стали важными элементами современных архитектур. Такие ин-

струменты, как Redux, Bloc или MobX, обеспечивают эффективное

управление состоянием приложения, минимизируя дублирование дан-

ных и обеспечивая согласованность между различными компонентами.

Это особенно актуально для приложений с большим количеством ди-

намических данных или сложной бизнес-логикой [4].

Еще одним значительным трендом является интеграция

Dependency Injection (DI), которая упрощает управление зависимо-

стями в приложении. Инструменты вроде Dagger или Hilt для Android

и SwiftUI для iOS позволяют автоматически создавать и управлять за-

висимостями, что делает архитектуру более гибкой и удобной для те-

стирования.

Кроссплатформенные подходы, такие как использование Flutter,

React Native или Kotlin Multiplatform, также продолжают набирать по-

пулярность. Они позволяют существенно сократить время и ресурсы на

разработку, при этом обеспечивая высокую производительность и

близкий к нативному пользовательский опыт.

Кроме того, современные архитектурные решения активно адап-

тируются под требования DevOps, что включает автоматизацию тести-

рования, интеграции и развертывания. Это упрощает процесс доставки

обновлений и улучшает контроль качества приложения.

Архитектура мобильного приложения является фундаментом

успешного проекта. Ее выбор влияет на все аспекты разработки: от про-

изводительности и масштабируемости до удобства сопровождения и

тестирования. Правильно выбранная архитектура позволяет эффек-

тивно адаптироваться к изменяющимся требованиям, снижать затраты

на разработку и обеспечивать высокий уровень удовлетворенности

пользователей.

Рассмотренные подходы, такие как MVC, MVP, MVVM и Clean

160

Architecture, предлагают широкий спектр возможностей для реализа-

ции приложений на платформах Android и iOS. Каждый из них имеет

свои сильные стороны и подходит для различных типов проектов. Со-

временные тренды, включая микросервисы, управление состоянием, DI

и кроссплатформенные фреймворки, дополняют традиционные под-

ходы, позволяя создавать более гибкие и адаптивные системы.

В условиях стремительно развивающейся мобильной индустрии

выбор архитектуры должен основываться на тщательном анализе по-

требностей проекта, особенностей целевой аудитории и требований

бизнеса. Только с учетом всех этих факторов можно создать приложе-

ние, которое будет успешно развиваться и оставаться актуальным в

долгосрочной перспективе.

ЛИТЕРАТУРА

1. Фаулер М. Архитектура корпоративных программных прило-

жений. – СПб.: Символ-Плюс, 2022.

2. Боб Мартин. Чистая архитектура: Искусство разработки про-

граммного обеспечения. – М.: Питер, 2019.

3. Шумаков А. Модели и архитектуры мобильных приложений:

от теории к практике. – СПб.: Лань, 2021.

4. Кокошко А. Программная инженерия: подходы, методологии,

инструменты. – СПб.: Наука и технологии, 2020.

УДК 004.415.2

О.А. Крайнова, доц. (ТГУ, г. Тольятти, Россия)

МОДЕЛИРОВАНИЕ ДАННЫХ В 1С:ERP: ВЫБОР НОТАЦИИ

ERP-системы играют ключевую роль в цифровой трансформа-

ции, обеспечивая единое пространство для управления и планирования.

Российские компании всё больше ориентируются на отечественные

ERP-решения, среди которых, согласно данным базы TAdviser [1], ли-

дирующую позицию составляет доля вендеров 1С, занимающая более

68 % рынка.

1С:ERP предлагает широкий набор инструментов для управления

основными бизнес-процессами предприятия. Система обеспечивает

мониторинг ключевых показателей, оптимизирует взаимодействие

между подразделениями и позволяет настраивать алгоритмы для

оценки эффективности работы на различных уровнях.

Переход на использование такого класса систем процесс трудо-

емкий и длительный, поэтому в обязательном порядке сопровождается

