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(57) 
1. Способ адаптивной фильтрации информативного сигнала в измерительном канале, 

при котором осуществляют аналого-цифровое преобразование входного сигнала и после-
дующую фильтрацию полученной цифровой последовательности, отличающийся тем, 
что упомянутую фильтрацию осуществляют посредством фильтра, содержащего буфер 
формирования очереди в виде последовательности последних значений входного пара-
метра сигнала, причем на каждом такте работы фильтра производят аппроксимацию те-
кущих значений входного параметра квадратичной или линейной зависимостью методом 
наименьших квадратов, рассчитывают выходное значение сигнала фильтра и формируют 
выходной сигнал по текущей полученной зависимости, используя оператор времени, ко-
торый характеризует стационарность процесса на предыдущем такте, и текущее значение 
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дисперсии, сравнивают текущие коэффициенты аппроксимации, характеризующие дина-
мику процесса на предыдущем и текущем тактах, и уменьшают длину буфера при суще-
ственном увеличении значений упомянутых коэффициентов, а при их существенном 
уменьшении увеличивают длину буфера, причем при незначительном колебании значений 
упомянутых коэффициентов сохраняют длину буфера, изменяют значение оператора вре-
мени для следующего такта, ставя его в соответствие с длиной очереди буфера и получен-
ных в результате аппроксимации коэффициентов, а также значения дисперсии. 

2. Способ по п. 1, отличающийся тем, что формируют упомянутый выходной сигнал, 
применяя соответствующие фильтры разных типов в зависимости от результатов упомя-
нутой аппроксимации. 

3. Способ по п. 1, отличающийся тем, что при формировании упомянутого выходно-
го сигнала осуществляют проверку отклонения измеренного значения входного параметра 
от аппроксимированного с последующим исключением тех значений, которые выходят за 
доверительный интервал таким образом, чтобы исключенные значения составляли не бо-
лее 20 % от количества использованных при аппроксимации, затем осуществляют повтор-
ную аппроксимацию и формируют выходной сигнал фильтра. 

4. Способ по п. 1, отличающийся тем, что формируют упомянутый выходной сигнал 
посредством локальной аппроксимации квадратичной или линейной зависимостью вре-
менного тренда упомянутого входного параметра с минимизацией суммы модулей откло-
нений. 

5. Способ по п. 1, отличающийся тем, что при возрастании значения упомянутой 
дисперсии более 20 % осуществляют проверку значения дисперсии для квадратичной, ли-
нейной, логарифмической, показательной зависимостей и выбирают алгоритм аппрокси-
мации с минимальным значением дисперсии. 

 
 

Изобретение относится к адаптивным фильтрам и может быть использовано в измери-
тельной технике для обработки информативных сигналов, в системах идентификации не-
известных устройств и системах адаптивного управления технологическими процессами, 
в шумоподавителях, эквалайзерах и подавителях сигнала эха, в детекторах модулирован-
ных сигналов для систем телеметрии и т. д. 

Известны способы адаптивной фильтрации и устройства для их осуществления, вклю-
чающие аналого-цифровое преобразование и последующую фильтрацию цифровых по-
следовательностей с помощью фильтров скользящего среднего с изменяемыми весовыми 
коэффициентами, имеющих конечную импульсную характеристику, причем весовые ко-
эффициенты выбирают по вектору ошибки или невязки из перестраиваемой матрицы ко-
эффициентов, рассчитывают на основе минимизации ошибок градиентным методом с 
поисковым определением компонент градиента или определяют методом наименьших 
квадратов [1-4]. 

Данные способы и основанные на них устройства обладают следующими недостатка-
ми. Для реализации алгоритмов оценивания и расчета весовых коэффициентов требуется 
высокая вычислительная мощность, определяемая размерностью системы уравнений на 
один шаг при численном интегрировании дифференциальных уравнений для аналоговых 
фильтров или алгебраических уравнений - для цифровых. Значительным недостатком из-
вестных адаптивных фильтров является ограниченное возрастание точности с течением 
времени даже при соблюдении в реальном процессе принятой модели шума, а также не-
устойчивая работа устройств, обусловленная неидентичностью предполагаемых и реаль-
ных моделей полезного сигнала и шума. При наличии нескольких локальных экстремумов 
в функциях ошибок или невязок градиентные методы с поисковым определением компо-
нент градиента могут осуществлять выбор весовых коэффициентов, соответствующих 
экстремуму, не дающему абсолютно минимального значения ошибки или невязки. Ис-
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пользование статистических методов определения весовых коэффициентов также не обес-
печивает устойчивости работы фильтра в случае нестационарности вероятностных харак-
теристик процесса. 

По технической сущности и достигаемому результату близкими к заявляемому явля-
ются способ и устройство для выбора сигнала адаптивного фильтра в соответствии с ти-
пом или классом [5]. В данном способе определяется принадлежность сигнала к классу 
движений, ошибок и к определенному пространственному классу (например, классу в 
пространстве состояний), после чего в соответствии с определенными классами выбира-
ются весовые коэффициенты и сигналы фильтра. Операция аналого-цифрового преобра-
зования, отсутствующая в техническом решении, описанном в [5], известна из других 
технических решений [1-4]. 

Задачей изобретения является повышение качества сглаживания и прогнозирования 
временной задержки, увеличение точности при фильтрации последовательностей данных, 
имеющих стационарные вероятностные характеристики, и обеспечение устойчивости ра-
боты фильтра для нестационарных процессов. 

Поставленная задача достигается, во-первых, тем, что используется фильтр, содержа-
щий буфер формирования очереди некоторого количества последних значений входного 
параметра, на основании которой на каждом такте работы производят аппроксимацию те-
кущих значений квадратичной или линейной зависимостью методом наименьших квадра-
тов, расчет выходного значения фильтра на основании текущей полученной зависимости с 
использованием оператора времени, который характеризует стационарность процесса на 
предыдущем шаге, расчет текущего значения дисперсии, сравнение динамики на преды-
дущем и текущем такте, уменьшение длины буфера при существенном увеличении дина-
мики и увеличение длины буфера при существенном уменьшении динамики или 
сохранении длины буфера при незначительных колебаниях, изменение оператора времени 
для следующего такта в зависимости от длины очереди и полученных в результате ап-
проксимации коэффициентов, а также значения дисперсии. Во-вторых, тем, что формиро-
вание выходного сигнала осуществляют разными типами фильтров в зависимости от 
результатов аппроксимации. В-третьих, тем, что при формировании выходного сигнала 
происходит проверка отклонения измеренного значения от аппроксимированного с после-
дующим исключением тех, которые выходят за доверительный интервал, но не более 20 % 
от количества использованных при аппроксимации, повторная аппроксимация и форми-
рование выходного значения фильтра. В-четвертых, тем, что формирование выходного 
сигнала и подстройка алгоритма происходит за счет использования локальной аппрокси-
мации квадратичной или линейной зависимостью временного тренда с минимизацией 
суммы модулей отклонений. А также тем, что в случае возрастания значения дисперсии 
выше 20 % происходит проверка величины дисперсии для квадратичной, линейной, лога-
рифмической или показательной зависимости и замена на алгоритм аппроксимации с ми-
нимальной дисперсией. 

Данный способ можно отнести к методам непараметрической фильтрации (метод ло-
кальной аппроксимации (МЛА)). Суть этого метода состоит в использовании скользящих 
локально-параметрических моделей. Для обеспечения максимального качества сглажива-
ния требуется определить порядок локальности и выбрать локально-параметрическую мо-
дель. 

Наиболее часто на практике для сглаживания применяются фильтры бегущего средне-
го и низких частот. Практика их реализации хорошо отработана. Фильтры бегущего сред-
него используют как простейшие формулы 
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так и формулы с весовыми коэффициентами 
i i i 1 i 1 i N 1 i N 1 i N

i
a x a x x x xy ,

N
− − − + − + −+ + + +

=


 (2) 

при условии 
a1 + a2 + … + aN-1 + aN-1 = N, 

где yi - выход; xi - текущее измерение; N - порядок (диапазон) усреднения. 
Методы локальной аппроксимации могут иметь различные варианты весовых функ-

ций. Однако это сопряжено с большими требованиями по мощности вычислений. Для 
применения в автономном режиме в реальном времени с невысокими требованиями по 
мощности приемлемым вариантом является использование прямоугольных финитных 
функций. В качестве локальных моделей предлагается использовать линейную и квадра-
тичную аппроксимации: 

y(t) = c1 + c2t (3) 
 

y(t) = d1 + d2t + d2t2 (4) 
где 
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 (6) 

 
wj = (t1)j–1 + (t2)j–1 + … + (tN)j–1; (7) 

 
bj = (t1x1)j–1 + (t2x2)j–1 +… + (tN xN)j–1; (8) 

 
tk = [0∆t 2∆t…(N–2)∆t(N–1)∆t], (9) 

 
∆t - время квантования. 

Система уравнений (5)-(6) является результатом применения метода наименьших 
квадратов. В отличие от других весовых функций не требует большого количества вычис-
лений. 

Для формирования выходного значения yi может быть использовано любое значение 
t = tS в диапазоне аппроксимации [0…(N–1)∆t]. В зависимости от величины N и особенно-
сти шумов, tk имеет свое оптимальное значение. Проведенные исследования показали, что 

 
SSi y)t(y −  (10) 

 
имеет параболическую зависимость, минимум которой находится в первой половине диа-
пазона аппроксимации, где ys - истинное значение параметра. При использовании (3) и 
значении tS, равном половине диапазона аппроксимации, сглаживание будет соответство-
вать методу бегущего среднего (2). 

Кроме метода наименьших квадратов могут быть применены другие функции метода 
МЛА. Использование экспоненциальных и логарифмических зависимостей потребует еще 
большей вычислительной мощности. Для уменьшения вычислительной мощности может 
быть использована квадратичная или линейная аппроксимация по методу средних значе-
ний. 
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Принцип использования расчетных формул для проведения вычислений по методу 
средних не отличается от метода наименьших квадратов. Матрицы для вычислений могут 
иметь различный вид. С учетом того, что в цифровых системах есть ограничения на вы-
числительную точность, следует рекомендовать разбивать исходные уравнения на при-
близительно равные группы. 

Пусть r, n, m - натуральные числа, равные r ≈ N/3, n ≈ N/3, m ≈ N/3 при r + n + m = N, 
тогда для квадратичной зависимости 
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где 
y1 = r; y4 = n; y7 = m; (12a) 
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При линейной зависимости 
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где 
v1 = z; v3 = N–z;  (15a) 
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Значение z должно быть натуральным числом и равным примерно половине N. 
Для демонстрации эффективности работы фильтров было проведено моделирование. 

Результаты представлены на фиг. 1, 2, где (3) - первичный сигнал синусоидальной формы; 
(4) - исходные зашумленные данные, поступающие на вход фильтра. 

На фиг. 1 представлены результаты сглаживания на частоте при высоком уровне шума 
для следующих вариантов фильтров: линейная аппроксимация N = 3, 5 (1); ФНЧ (2); пара-
болическая аппроксимация при N = 9, 11 (5); скользящее среднее при N = 5 (6). 

На фиг. 2 (а) представлены результаты сглаживания на частоте при низком уровне 
шума для следующих вариантов фильтров: линейная аппроксимация N = 3, 5 (1); ФНЧ (2); 
параболическая аппроксимация при N = 9, 11 (5); скользящее среднее при N = 5 (6). На 
фиг. 2 (б) показана работа фильтров в увеличенном масштабе. 
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Зачастую после аналогово-цифрового преобразователя в измерительных данных вме-
сте с шумом первичного преобразователя возникают значения с большими отклонениями. 
Это является следствием либо внешних импульсных помех, либо наличия паразитных свя-
зей в измерительной схеме. Для борьбы с такими явлениями обычно используют медиан-
ный фильтр и т. д. Путем локальной аппроксимации можно также бороться с 
импульсными помехами типа шпоры. Сравнивая величины отклонения xi … xi–N + 1 от ре-
зультатов аппроксимации с некоторыми значениями, можно существенно уменьшить вли-
яние данного типа помех на сглаживание. Впервые обнаруженные плохие значения можно 
фиксировать и не использовать в последующих аппроксимациях. 

Автономная работа адаптации (фиг. 3) предполагает проведение постоянных расчетов 
по линейной или параболической аппроксимации. Блок 1 запоминает требуемую длину 
последних значений отсветов АЦП, блок 2 производит расчет значений w1…w5, b1…b3, 
блок 3 производит расчет c1, c2, c3. 

Результаты моделирования показали, что окно аппроксимации N не стоит увеличивать 
более чем на 20. Слежение за коэффициентами d2 и c2 позволяет определять текущую ди-
намику и, в зависимости от этого, осуществлять выбор вида и параметров сглаживания. 
Ввиду ухудшения работы при снижении интегральной скорости в МЛА стоит произво-
дить перевод измерительного канала на работу выхода с использованием фильтра низких 
частот. 

Вычисление величины дисперсии отклонения E значений от аппроксимированных 
кривых не является сложной задачей. Слежение за ней позволяет характеризовать теку-
щие параметры шумов в измерительном канале. Это позволит осуществлять выбор между 
линейной и квадратичной аппроксимацией и их параметрами. 

Метод наименьших квадратов, который в первую очередь предлагается использовать 
для фильтрации, путем вычисления суммы квадратов отклонений, следит за адекватно-
стью выбранного решения, поскольку минимизация данной суммы говорит и о минималь-
ных отклонениях результатов аппроксимации от истинных значений контролируемого 
параметра. Эта особенность позволяет производить постоянное обучение фильтра под из-
меняющеся условия и изменять функции tsf(E, c2, c3), Nʼf(E, c2, c3) (фиг. 4). Здесь блок 6 по 
принципу нейронной сети производит уточнение базы данных для расчета ts и N. 

Представленные результаты моделирования показывают, что предложенный способ 
фильтрации эффективно справляется с задачей восстановления и сглаживания исходной 
формы сигнала. 

В Республике Беларусь данное изобретение может быть применено в измерительной 
технике для обработки информативных сигналов; в схемах построения измерительных 
преобразователей, в том числе при аддитивном производстве изделий; в системах иденти-
фикации неизвестных устройств; в системах адаптивного управления технологическими 
процессами; в шумоподавителях, эквалайзерах, а также подавителях сигнала эха и т. д. 
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