
110

очистки. Уровень развития биоценоза оценивается по преобладающим

группам простейших, а деструкционный потенциал – по основным по-

казателям функционирования аэротенков, таким как нагрузка на ил и

степень очистки по биохимическому потреблению кислорода (БПК).

Показателями высокого уровня развития биоценоза, значит, и вы-

сокого качества очистки сточных вод, являются хищники: черви, сосу-

щие инфузории, хищные коловратки, грибы, тихоходки. В таких усло-

виях, когда высока степень удаления органических загрязнений, интен-

сивно протекает нитрификация.

Если на данный момент степень очистки сточных вод в аэротенке

удовлетворяет предъявляемым требованиям, и при этом активный ил

хорошо оседает во вторичных отстойниках, существующий биоценоз

следует признать характерным для данных очистных сооружений.

Важным аспектом является своевременное выявление изменений

в составе индикаторных групп организмов, которые могут указывать на

снижение качества очистки. При ухудшении состояния биоценоза

необходимо оперативно устранять причины таких изменений.

В условиях нехватки квалифицированных специалистов автома-

тизация анализа состояния биоценоза становится необходимой. Разра-

батываемый сервис существенно упростит и ускорит работу, обеспечи-

вая обработку данных в автоматическом режиме.

Сервис позволит не только улучшить контроль и управление про-

цессами на конкретных очистных сооружениях, но и создать единую

базу данных, охватывающую всю территорию Беларуси. Это позволит

отслеживать общую ситуацию по очистке сточных вод, анализировать

тенденции и оперативно реагировать на возникающие проблемы, что в

итоге повысит эффективность работы всех очистных сооружений

страны.

УДК 004.432.2

А.С. Наркевич, ст. преп. (БГТУ, г. Минск)

ПОИСК И ОБРАБОТКА ОШИБОК В С++

Существует два основных типа ошибок в программном коде:

ошибки пользователя и ошибки программиста. Ошибка пользователя

возникает, когда пользователь, например, вводит неверные данные, пы-

тается открыть несуществующий файл и т.п. Ошибка программиста –

это результат ошибки в коде.

Отладка – это способ диагностики дефектов в программе с целью

111

исправления ошибок. Поиск дефекта и его понимание обычно состав-

ляют 90% работы [1].

Для лучшего понимания кода и умения отслеживать ошибки в

нём нужно, прежде всего, научиться читать и выполнять команды ас-

семблера в отладчике, отображать и анализировать значения перемен-

ных в окнах памяти или через регистры, просматривать стек вызовов

(механизм, который отслеживает порядок вызова функций/методов в

программе).

Ошибки при работе с памятью относятся к числу самых распро-

странённых. Из них наиболее трудными для обнаружения являются

утечки памяти и нарушение ее целостности, которые возникают, когда

память, выделенная программой, но никогда не освобождается.

Отладчик Visual C++ и стандартная библиотека времени выпол-

нения C (CRT) предоставляют набор инструментов для обнаружения и

локализации утечек памяти. Чтобы активизировать эти функции,

нужно включить в программу на C++ следующие директивы в указан-

ном порядке:

#define _CRTDBG_MAP_ALLOC
#include <stdlib.h>
#include <crtdbg.h>

Деректива #define сопоставляет базовую версию функций кучи

CRT с соответствующей отладочной версией. Без неё отчёт об утечках

памяти будет менее подробным.

Включение файла crtdbg.h, сопоставляет вызовы функций malloc

и free с их отладочными версиями _malloc_dbg и _free_dbg, которые от-

слеживают все операции по распределению и освобождению памяти.

Перенаправление происходит только в отладочной версии программы

(макрос _DEBUG должен быть определён). В окончательной версии бу-

дут использоваться обычные функции malloc и free.

Получить информацию об утечках памяти, можно вызвав функ-

цию _CrtDumpMemoryLeaks().

Когда программа выполняется под управлением отладчика,

_CrtDumpMemoryLeaks отображает информацию об утечках памяти на

вкладке Debug окна Output.

Пример кода на C++:

#define _CRTDBG_MAP_ALLOC
#include <stdlib.h>
#include <crtdbg.h>

112

void main(){
char* pointer = nullptr; // Создаем указатель
for (int i = 0; i < 5; ++i) {
 // На каждой итерации цикла в указатель помещаем новый

адрес
 pointer = new char[10]; // Создаем новый массив
}
delete[] pointer; // Удаляем из памяти последний
массив

_CrtDumpMemoryLeaks();

}

Отчёт об утечках памяти:

Поток 0x3f8 завершился с кодом 0 (0x0).
Detected memory leaks!
Dumping objects ->
{84} normal block at 0x00F14BE8, 10 bytes long.
 Data: < > CD CD CD CD CD CD CD CD CD CD
{83} normal block at 0x00F14BB0, 10 bytes long.
 Data: < > CD CD CD CD CD CD CD CD CD CD
{82} normal block at 0x00F14B60, 10 bytes long.
 Data: < > CD CD CD CD CD CD CD CD CD CD
{81} normal block at 0x00F149F0, 10 bytes long.
 Data: < > CD CD CD CD CD CD CD CD CD CD
Object dump complete.

Подробнее использование инструментов описано в [2].

Иногда ошибки появляются только в релизных сборках, но они

исчезают в режиме отладки. Эти ошибки бывают вызваны неинициали-

зированными переменными, потому что переменные и динамически

выделяемые блоки памяти часто устанавливаются в ноль в режиме от-

ладки, но остаются «с мусором» в сборке без отладки.

Ошибки пользователя лучше всего обрабатывать, отображая не-

которую полезную информацию для пользователя, а затем позволяя

ему продолжать работать (с гибкой политикой «информируй и продол-

жай»).

Обнаружив ошибки программиста, лучше остановить выполне-

ние программы и предоставить подробную информацию, чтобы про-

граммист мог быстро выявить и устранить проблему.

Распространённым подходом к обработке ошибок является воз-

вращение некоторого кода ошибки из функции, в которой обнаружена

проблема. Это может быть логическое значение, указывающее на успех

113

или неудачу, или значение, выходящее за пределы допустимого диапа-

зона обычно возвращаемых результатов.

Коды возврата ошибок – это простой и надежный способ реаги-

рования на ошибки.

Механизм обработки исключений в C++ позволяет функции, ко-

торая обнаружила проблему, сообщать об ошибке остальной части

кода, ничего не зная о том, какая функция может обработать ошибку.

После обнаружения ошибки стек вызовов автоматически раскру-

чивается в поисках вызывающей функции, чей вызов обернут в блок

try-catch. Если найден блок try-catch, объект исключения сопоставля-

ется со всеми возможными случаями catch и, если найдено совпадение,

выполняется соответствующий блок кода catch. При этом деструкторы

любых автоматических переменных вызываются по мере необходимо-

сти в процессе раскручивания стека.

Однако обработка исключений добавляет некоторые накладные

расходы в программу.

Получение ресурса есть инициализация (RAII), это техника про-

граммирования C++, которая связывает жизненный цикл ресурса, кото-

рый должен быть получен перед его использованием. Таким ресурсом

может быть выделение памяти в куче, открытие потока выполнения,

открытие сокета, открытие файла, выделение дискового пространства,

подключение к базе данных и т.д. [3].

Использование RAII значительно упрощает управление ресур-

сами, уменьшает общий размер кода и помогает обеспечить коррект-

ность программы. Поэтому принцип RAII рекомендуется как безопас-

ный метод управления ресурсами.

ЛИТЕРАТУРА

1. Макконнелл С. Совершенный код. Мастер-класс / Пер. с англ. –

М. : Издательство «Русская редакция», 2010. – 896 с.

2. Найдите утечки памяти с помощью библиотеки CRT [Элек-

тронный ресурс] – URL: https://learn-microsoft-com.translate.goog/en-

us/cpp/c-runtime-library/find-memory-leaks-using-the-crt-

library?view=msvc-

170&_x_tr_sl=en&_x_tr_tl=ru&_x_tr_hl=ru&_x_tr_pto=rq (дата обраще-

ния: 10.01.2025г.).

3. Resource acquisition is initialization [Электронный ресурс] –

URL: https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization

(дата обращения: 10.01.2025г.).

