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ПРОГНОЗИРОВАНИЕ ТРАЕКТОРИИ СВОБОДНОЙ СТРУИ 

НА ОСНОВЕ MLP И KAN МОДЕЛЕЙ 

В работах [1, 2] предложена методика разработки нейросетевых 

моделей для расчета параметров свободных жидкостных струй значи-

тельных геометрических размеров, одной из прикладных областей при-

менения которых является ликвидация и ограничение распространения 

пожара, защита строительных конструкций от теплового излучения, 

охлаждение технологического оборудования, в т.ч. наружных устано-

вок. Для организации гибкого реагирования на различные сценарии 

развития пожара подобные струи воды или пены формируются и 

направляются пожарными роботами – автоматическими устройствами, 

в состав которых входит рабочий орган (лафетный ствол), устройство 

программного управления и другие элементы [3].  

Из-за возмущающих воздействий (например, ветровых нагрузок) 

на открытых пространствах траектория струи может отклоняться от 

прогнозируемой. В этом случае система управления роботизированной 

установкой пожаротушения (СУ РУП) в режиме реального времени 

должна автоматически выдавать сигнал пожарным роботам для коррек-

тировки положения рабочего органа в пространстве. 

Таким образом, является актуальным создание программного мо-

дуля на основе нейросетовой модели, осуществляющего в реальном 

времени расчет координат траектории струи с учетом возмущающих 

воздействий и текущих рабочих параметров пожарного робота. При 

этом данный расчет должен быть реализуемым на существующей эле-

ментной базе СУ РУП. 
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Наличие множества значений признаков, которые включают ши-

рокий набор комбинаций возмущающих и управляющих воздействий, 

обуславливает значительный объем памяти, занимаемый соответству-

ющей нейросетевой моделью. Для ее реализации с учетом аппаратных 

характеристик устройств СУ РУП требуется, с одной стороны, мини-

мизация размера программного модуля, с другой стороны, обеспечение 

приемлемой скорости расчета. При этом приоритетным является сохра-

нение точности прогнозирования траектории струи. 

В данном материале обоснован выбор базовой архитектуры 

нейросети для решения целевой задачи прогнозирования траектории 

струи в режиме реального времени с учетом направления и скорости 

бокового ветра. Рассмотрены следующие модели: MLP – полносвязная 

сеть на основе мнослойного персептрона с функцией активации ReLU 

и KAN – нейросеть, использующая функции активации, находящиеся в 

связях между нейронами и аппроксимируемые сплайнами [4]. 

Программная реализация MLP и KAN моделей, их обучение и 

оценка качества выполнены на базе библиотек Python: scikit-learn, 

pyTorch и pyKAN [4]. 

В качестве функции потерь при обучении моделей задавался ко-

рень средней квадратичной ошибки (метрика RMSE) прогнозирования 

значений трехмерных координат точек траектории струи относительно 

экспериментальных: 
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где N – количество точек траектории струи, построенной на основе 

нейросетевой модели; Pe,i – координаты i-й точки траектории струи, по-

строенной на основе нейросетевой модели; Pm,i – координаты точки экс-

периментальной траектории струи, ближайшей к точке Pe,i; |*| – модуль 

вектора. 

Остановка обучения модели осуществлялась при достижении за-

данного количества итераций или в случае отсутствия улучшения 

функции потерь в течение 10 шагов.  

Обучающие и тестовые выборки в соотношении 5 : 1 составлены 

в результате модельных экспериментов на основе методов вычисли-

тельной гидродинамики [5] для ограниченного диапазона рабочих па-

раметров лафетного ствола и заданных условий окружающей среды. 

Дополнительными критериями сравнения моделей, помимо 

ошибки, выступали: объем памяти, занимаемый обученной сетью; 

время расчета прогноза; время обучения сети. 

В табл. приведены параметры финальных архитектур моделей, 
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обеспечивающих приемлемые точность и быстродействие прогноза, а 

также размер обученной нейросети. 

Таблица – Основные параметры MLP и KAN моделей, обученных для расчета 

траекторий свободных струй с учетом возмущающих воздействий 

Наименование параметра MPL KAN 

Структура скрытых слоев сети [400, 400, 400, 400, 400] [5, 3] 

Среднее по результатам 10 запусков 

время обучения, с 
33 177 

Среднее по результатам 1000 

запусков время расчета прогноза, мс 
3 14 

Размер обученной сети, КБ 5029 21 

RMSE, м 0.35 0.32 
 

На рис. приведена верхняя граница свободной струи в трехмер-

ном пространстве [4], для вычисления координат которой использо-

ваны рассматриваемые модели. 

Из анализа полученных результатов (таблица, рисунок) следует, 

что в рамках решаемой задачи точности прогноза на основе MLP и 

KAN моделей близки. При этом архитектура MLP характеризуется бо-

лее высокой скоростью как обучения модели, так и прогнозирования на 

ее основе. Однако, архитектура KAN при соизмеримом быстродей-

ствии требует на два порядка меньшего объема памяти за счет умень-

шения числа узлов и количества скрытых слоев сети. 

 
Рисунок – Результаты расчета координат верхней границы  

свободной струи при боковом ветре 
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Таким образом, с точки зрения внедрения методов машинного 

обучения для прогнозирования в режиме реального времени траекто-

рий струй на основе существующей элементной базы СУ РУП целесо-

образно использовать KAN-модели, которые обеспечивают приемле-

мые точность и скорость расчета при минимальном размере обученной 

нейросети.  

Следует отметить, что применение других существующих мето-

дик уменьшения размеров нейронных сетей, таких как прунинг (усече-

ние), квантование, тензорная декомпозиция, дистилляция знаний, отри-

цательно сказывается на точности модели [4], в отличии от рассмотрен-

ной сети KAN. 
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