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В результате этапа обучения на основе эталонных наборов дан-

ных вход-выход ИНС настраивается таким образом, чтобы в дальней-

шем для  произвольного входного сигнала выдать достаточно точный 

результат. Перед началом обучения весовые коэффициенты устанавли-

ваются равными некоторым случайным значениям. В процессе обуче-

ния сеть должна корректировать весовые коэффициенты так, чтобы 

максимально уменьшить значение общей ошибки. По завершении 

успешного обучения сети можно переходить к работе с тестовыми объ-

ектами [3]. 

Интеллектуальный анализ и обработка данных представляют со-

бой мощный инструмент, способствующий преобразованию больших 

объемов данных в ценные знания и информацию. Применение этого 

подхода позволяет раскрывать скрытые закономерности и тенденции, 

что важно для принятия стратегических решений. В целом, развитие 

методов и технологий интеллектуального обработки данных обещает 

значительное усиление аналитических возможностей и эффективность 

принимаемых на их основе решений. 
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АНАЛИЗ МОДЕЛЕЙ И СРЕДСТВ СТЕГАНОГРАФИЧЕСКОГО 
ПРЕОБРАЗОВАНИЯ ИНФОРМАЦИИ НА ОСНОВЕ 

НЕЙРОСЕТЕВЫХ ТЕХНОЛОГИЙ 

Стеганография – наука о способах передачи или хранения инфор-

мации при сохранении в тайне самого факта такой передачи (хране-

ния) [1]. С развитием искусственного интеллекта (ИИ) интеграция сте-
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ганографии и нейронных сетей (НС) [2] привела к появлению техноло-

гий сокрытия информации, основанных на глубоком обучении.   

В докладе проанализированы особенности основных стеганогра-

фических методов на основе ИНС.  

Стеганографические системы на основе архитектуры «кодер-

декодер». Классический вариант данной архитектуры рассмотрен в [3]. 

Здесь реализуется сокрытие цветного изображения в другом цветном 

изображении того же размера. В процессе обучения НС декодера гаран-

тируется сходство между изображением-контейнером и секретным 

изображением, обеспечивая заданную точность извлечения сообщения 

из контейнера. Модель уязвима для стеганоанализа.  

В [4] предложена модель StegNet, в которой модифицирова функ-

цию потерь для контроля шума и обеспечения большего сходства 

между носителем и секретным изображением. Архитектуру U-Net, в 

свою очередь, претерпела дальнейшую модификацию в [5] с целью для 

сохранения особенностей разных уровней (плоскости пикселей) изоб-

ражения, что еще больше улучшило качество извлеченного изображе-

ния. 

Все три упомянутых метода используют архитектуру кодер-де-

кодер для сокрытия/извлечения сообщения, обеспечивая при этом до-

статочно высокий уровень скрытности стего-изображений. Однако, 

они различаются в механизмах сокрытия и устойчивости к атакам. Ме-

тод, описанный в [3] позволяет встраивать секретное изображение рав-

номерно по всему изображению-контейнеру. В сравнении с StegNet и 

U-Net этот метод обеспечивает среднюю устойчивость к атакам и тре-

бует значительных вычислительных ресурсов. StegNet использует до-

полнительные механизмы для повышения устойчивости к атакам. U-

Net, изначально разработанный для сегментации изображений, обеспе-

чивает высокую эффективность в сокрытии и извлечении информации. 

Можно отметить, что названия основных структурных компонен-

тов НС «кодер» (encoder) и «декодер» (decoder) встречаются во многих 

моделях, где основу составляют иные механизмы стеганопреобразова-

ний в сравнении с описанными. 

Стеганографические системы на основе генеративно-состя-

зательных сетей (GAN). GAN (Generative Adversarial Network) [6] – 

это архитектура нейронных сетей, которая состоит из двух частей: ге-

нератора (Generator) и дискриминатора (Discriminator), которые обуча-

ются в состязательной манере. Генератор создает новые данные (напри-

мер, изображения) на основе входного шума. Дискриминатор оцени-

вает, являются ли данные, представленные ему, настоящими (из обуча-

ющего набора данных) или созданными генератором. 
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В процессе обучения генератор «старается» обмануть дискрими-

натор, создавая все более реалистичные данные, а дискриминатор, в 

свою очередь, «старается» лучше отличать настоящие данные от сгене-

рированных. 

К данному классу систем относятся ISGAN (Invisible 

Steganography via Generative Adversarial Networks – невидимая стегано-

графия на основе генеративно-состязательных сетей) [7] и ABDH 

(Attention-Based Dual Hiding – двойное сокрытие, основанное на внима-

нии) [8]. ISGAN использует стандартную архитектуру GAN, встраивая 

сообщение равномерно по всему изображению. В сравнении с ABDH 

ISGAN обеспечивает среднюю устойчивость к атакам. Обе модели тре-

буют значительных вычислительных ресурсов и отличаются высокой 

сложностью обучения НС, но обеспечивают высокое качество стего-

изображений и устойчивость к шумам. 

Стеганографические системы на основе обратимых сетей. 

Обратимые НС позволяют не только получить выходные данные из 

входных, но и восстановить входные данные, используя выходные. Об-

ратимые сети используют специальные слои, которые сохраняют всю 

информацию, позволяя восстановить исходные данные. 

В стеганографических приложениях обратимые сети позволяют 

скрыть информацию в изображении таким образом, что её можно из-

влечь без потерь. При этом создаются стегоизображения, которые 

трудно отличимы от оригинальных, и обеспечивается точное восста-

новление скрытых данных. Среди стеганоалгоритмов на основе обра-

тимых сетей выделим следующие: ISN (Invertible Steganography 

Network – сеть для обратимой стеганографии) [9], HiNet (Reversible 

Image Hiding Network – сеть для обратимого сокрытия изображе-

ний) [10], DeepMIH (Deep Multi-Image Hiding – сокрытие нескольких 

изображений на основе глубокого обучения сети) [11].   

Все модели на основе обратимых сетей обеспечивают точное вос-

становление скрытой информации. Они требуют значительных вычис-

лительных ресурсов. Сети сложны в обучении, но обеспечивают устой-

чивость к шумам. 

Считается, что архитектуры сетей ISGAN, HiNet и DeepMIH реа-

лизуют передовыме методы стеганографии на основе НС, обеспечивая 

высокую скрытность и качество стего-изображений.  

Стеганографические системы на основе переноса стилей. Пе-

ренос стилей – это задача компьютерного зрения, которая заключается 

в изменении стиля изображения, сохраняя его содержимое. Стиль од-

ного изображения применяется к другому, сохраняя исходные контуры 

и объекты. 
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Модели сетей на основе переноса стилей [12] основаны на том, 

что скрываемое изображение применяется как стилевое оформление по 

отношению к изображению-контейнеру. Эта особенность используется 

при извлечении сообщения из стеганоконтейнера. 

Сеть ISTNet (Image Style Transfer Network основана на преобра-

зовании стиля изображение-контейнера в другое стегоизображение с 

совершенно другим стилем, учитывающим оформление осаждаемого 

сообщения.  Эта сеть использует VGG-подобную архитектуру для из-

влечения признаков стиля и содержания.  

Все модели на основе переноса стилей используют нейронные 

сети для переноса стиля из одного изображения на другое, что позво-

ляет скрывать информацию в "стиле" изображения-контейнера. Эти ме-

тоды обеспечивают высокую скрытность и устойчивость к стеганоана-

лизу, так как изменения в "стиле" менее заметны для человеческого 

глаза и традиционных методов стеганоанализа. Модели требуют значи-

тельных вычислительных ресурсов. Сети требуют достаточно трудоем-

кого обучения, но обеспечивают высокое качество стего-изображений 

и устойчивость к шумам. 

Схема стеганосистемы на основе стилизации применяет секрет-

ное изображение как стиль к изображению-контейнеру и использует 

дестилизацию для извлечения информации. Она обеспечивает сред-

нюю устойчивость к атакам и среднюю пропускную способность. Раз-

мер скрываемого сообщения имеет ограничение, зависящее  от слож-

ности используемого стиля. 
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МЕТОД ДИСКРЕТНОГО ВЕЙВЛЕТ-ПРЕОБРАЗОВАНИЯ 
В СТЕНОГРАФИЧЕСКИХ ПРИЛОЖЕНИЯХ 

Стеганография – наука о способах передачи (хранения) сокрытой 

информации, где скрытый канал организуется на базе и внутри откры-

того с использованием особенностей восприятия информации [1].  


