
6

Таблица 4 – Сила осциллятора Qy(0,0) электронного перехода в зависимости

от двугранных углов j5 и j15 между плоскостями макроцикла и нитрогрупп

j5, °
j15, °

0 30 46 60 90
0 643.4 635.3 629.4 623.3 612.0

30 635.0 629.2 625.1 620.3 609.6
46 629.2 625.1 622.4 618.5 608.3
60 623.3 620.5 618.7 615.6 605.6
90 611.8 609.6 608.2 605.4 594.4
120 623.1 620.3 618.7 615.6 605.8
160 639.4 632.6 627.7 622.3 611.5
180 643.3 635.2 629.4 623.2 612.0

Таким образом, полученные результаты однозначно указывают

на существенную зависимость формы спектров поглощения от дву-

гранных углов между плоскостью макроцикла и плоскостями нитро-

групп.

ЛИТЕРАТУРА

1. Гладков Л.Л., Крук Н.Н. Спектральные проявления модуляции

энергии электронных орбиталей макроцикла порфина при вращении

NO2-заместителя // Журн. прикл. спектр. – 2024. – Т. 91. – № 5. – C. 623–

629.

УДК 004.4-048 (075.8)

Н.А. Жиляк, доц. (БГТУ, г. Минск)

ЯЗЫК JAVASCRIPT ДЛЯ СИНТЕЗА ВЫЧИСЛИТЕЛЬНЫХ

СХЕМ НА ОСНОВЕ АЛГОРИТМОВ ОПТИМИЗАЦИИ

Век цифровых технологий требует от нас постоянного улучше-

ния и оптимизации вычислительных процессов. Одним из ключевых

аспектов в этой области является проектирование вычислительных

схем, которые могут эффективно выполнять определенные задачи.

В данной статье мы рассмотрим основные принципы проектирования

вычислительных схем, методы оптимизации и их применение в различ-

ных областях [1, 2].

Представим некоторые этапы проектирования вычислительных

схем:

1. Определение задачи. Проектирование вычислительной схемы

начинается с четкого определения задачи. Это может быть как простая

логическая функция, так и сложные алгоритмы обработки данных. На

этом этапе важно учитывать требования к производительности, надеж-

ности и энергопотреблению.

2. Выбор архитектуры. Существует множество архитектур для

7

проектирования вычислительных схем, каждая из которых имеет свои

преимущества и недостатки: комбинаторные схемы. Они принимают

входные данные и выдают выходные данные без хранения состояния.

Например, так работают мультиплексоры. Также схемы с памятью мо-

гут хранить состояние, что позволяет им выполнять более сложные

операции. Примерами могут выступать триггеры и регистры. Парал-

лельные схемы могут обрабатывать несколько задач одновременно, что

значительно увеличивает производительность.

3. Моделирование схемы. На этом этапе проектировщик создает

модель схемы с использованием языков описания аппаратуры (HDL),

таких как VHDL или Verilog. Моделирование позволяет проверить

функциональность схемы до ее физической реализации.

Оптимизация вычислительных схем может быть выполнена с по-

мощью различных подходов и методов:

1. Логическая оптимизация. Этот подход включает упрощение

логических выражений, что позволяет уменьшить количество исполь-

зуемых логических элементов. Методы которые используют примене-

ние карт Карно или алгоритм Куайна-МакКласки, широко использу-

ются для этой цели.

2. Оптимизация по времени. Оптимизация по времени направ-

лена на уменьшение временных задержек в схеме. Это может быть до-

стигнуто за счет изменения порядка выполнения операций или исполь-

зования более быстрых логических элементов.

3. Оптимизация по мощности Энергопотребление становится

критически важным, особенно в мобильных устройствах. Оптимизация

по мощности включает в себя использование энергосберегающих ком-

понентов и алгоритмов, которые минимизируют активное время ра-

боты схемы.

4. Оптимизация по площади. В некоторых случаях важно умень-

шить физический размер схемы. Это может быть достигнуто путем ис-

пользования более компактных логических элементов или путем инте-

грации нескольких функций в одном элементе.

Вычислительные схемы находят применение в различных обла-

стях, например, при разработке архитектуры компьютера. Оптимизи-

рованные схемы используются для создания процессоров, которые спо-

собны выполнять сложные вычисления быстрее и с меньшим потреб-

лением энергии. При обработке сигналов в аудио- и видеотехнике оп-

тимизированные схемы позволяют улучшить их качество. Если речь

идет о разработке встраиваемых систем управления, например, микро-

контроллеров, будут использоваться вычислительные схемы для управ-

ления устройствами и процессами.

8

Синтез вычислительных схем – это процесс проектирования и оп-

тимизации схем, которые могут выполнять определенные вычисления.

Использование JavaScript для этой задачи может быть интересным, осо-

бенно если вы хотите создать веб-приложение или инструмент для ви-

зуализации.

Вот пример подхода к синтезу вычислительных схем с использо-

ванием алгоритма оптимизации на JavaScript:

Шаг 1: Определение проблемы. Сначала нужно определить, ка-

кую задачу вы хотите решить. Например, это может быть минимизация

логических функций или оптимизация маршрутов в графе.

Шаг 2: Алгоритм оптимизации. Вы можете использовать различ-

ные алгоритмы оптимизации, такие как генетические алгоритмы, алго-

ритмы муравьиной колонии или даже простые жадные алгоритмы. Для

простоты мы рассмотрим жадный алгоритм.

Шаг 3: Реализация на JavaScript. Вот пример простого кода, ко-

торый демонстрирует создание и оптимизацию вычислительной

схемы:

JavaScript
class Node {
 constructor(value) {
 this.value = value;
 this.children = [];
 }
 addChild(child) {
 this.children.push(child);
 }
}
class Circuit {
 constructor() {
 this.nodes = [];
 }
 addNode(node) {
 this.nodes.push(node);
 }
 optimize() {
 // Пример жадной оптимизации: удаление неиспользуе-
мых узлов
 this.nodes = this.nodes.filter(node => this.is-
Used(node));
 }
 isUsed(node) {
 // Проверка, используется ли узел в других узлах
 return this.nodes.some(n => n.children.in-
cludes(node));
 }
 display() {
 // Отображение схемы (можно расширить для более
сложного отображения)
 this.nodes.forEach(node => {

9

 console.log(Node: ${node.value}, Children:
${node.children.map(child => child.value).join(', ')});
 });
 }
}
// Пример использования
const circuit = new Circuit();
const nodeA = new Node('A');
const nodeB = new Node('B');
const nodeC = new Node('C');
nodeA.addChild(nodeB);
nodeB.addChild(nodeC);
circuit.addNode(nodeA);
circuit.addNode(nodeB);
circuit.addNode(nodeC);
// Оптимизация схемы
circuit.optimize();
// Отображение результата
circuit.display();

Шаг 4: Визуализация. Для визуализации схемы можно использо-

вать библиотеки, такие как D3.js, чтобы создать графическое представ-

ление ваших узлов и соединений.

Шаг 5: Расширение функциональности. В зависимости от ваших

потребностей, вы можете добавлять больше функций, таких как: • Под-

держка различных типов узлов (логические операции, арифметические

операции и т.д.). Более сложные алгоритмы оптимизации. Интерфейс

для ввода данных пользователем.

Синтез вычислительных схем с использованием JavaScript – это

интересная задача, которая может быть реализована различными спо-

собами. Выбор алгоритма оптимизации и подхода к реализации будет

зависеть от конкретных требований вашего проекта [1]. Проектирова-

ние вычислительных схем и их оптимизация – это сложный процесс,

который требует глубоких знаний в области электроники и компьютер-

ных наук. С учетом постоянно развивающихся технологий, важно оста-

ваться в курсе новых методов и подходов к проектированию, чтобы со-

здавать эффективные и надежные решения для современных задач.

ЛИТЕРАТУРА

1. Алгоритм синтеза схем многоканальных вторичных вычисле-

ний / Н.А. Жиляк, А.С. Кобайло // Труды БГТУ. №6(144), Физ.-мат.

науки и информатика. – 2011. – С. 160–163.

2. Жиляк Н.А. / Методы синтеза вычислительных систем /

Н.А. Жиляк // Автоматический контроль и автоматизация производ-

ственных процессов: материалы Междунар. науч.-техн. конф., Минск,

28–29 окт. 2009 г. – Минск: БГТУ, 2009. – С. 71–73.

