ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ

Сухоцкий Альберт Борисович

Шаги пользователя при работе с FlowVision

Шаг 3. Задание граничных условий

B ветви дерева «Гр. условия» выделить соответствующую границу в дереве (при этом в основной части помеченная окна граница окрашивается цвет, заданный Β ранее).

Для облегчения дальнейшей работы границы желательно переименовать (назвав «Стенка», «Вход», «Выход» и т.п.) либо через пункт контекстного меню «Переименовать», либо через окно свойств граничного условия.

Далее открыть окно редактирования граничного условия, либо через пункт контекстного меню «Редактировать», либо через кнопку «Ed» в окне свойств.

Редактиров	ать граничное услови	1e	×
Модель : Но Тип границ	есжимаемая жидкость ы : Вход/Выход		•
Скорость Тип гранич Скорость	ТурбЭнергия ТурбДис ного условия : <mark>Норма</mark> 1	сипация	
	OK	Cancel Help	

В FlowVision существует две группы типов границ:

1. стенка с и без вдува,

2. специальные границы (периодические, сопряженные граничные условия и

скользящая поверхность).

Типы границ стенка с и без вдува включает следующие типы границ:

- Стенка (твердая стенка без протекания),
- Вход/Выход (стенка со вдувом или отсосом),
- Свободный выход (стенка со свободным выходом),
- Симметрия (условие симметричности).

Эти типы имеются во всех моделях, за исключениям **Твердый материал**, в которой имеются только типы **Стенка** и **Симметрия**.

Каждый тип границы включает в себя наборы граничных условий для каждой независимой переменной данной математической модели.

Редактирова	ать гранично	е условие	×
Модель : Не	сжимаемая жи	дкость	
Тип границь	: Вход/Вн	ыход	•
Скорость	ТурбЭнергия	ТурбДиссипация	
Тип граничн	юго условия :	Нормальная ск	орость
Скорость	1		123 -
	-		
	OK	Cancel	Help

Тип границы Стенка

Имя граничного условия	Граничное	е условие	Задаваемая величина
Стенка	$\upsilon_n = 0,$	$\upsilon_t = 0$	нет
Стенка с про- скальзыванием Тангенциальная закрутка	$\upsilon_n = 0,$	$\frac{d\upsilon_t}{dn} = 0$	нет ω – угловая ско- рость потока в 1/с
Стенка, логарифмический закон	$\upsilon_n = 0, \tau$	$z = \mu \frac{\partial u}{\partial y} \Big _{v=0}$	Абсолютная экви- валентная шеро- ховатость в мкм

Тип границы Вход/Выход

Имя граничного	Граничное условие	Задаваемая
условия		величина
Нормальная скорость	$\upsilon = \upsilon_n, \upsilon_t = 0$	υ _n
Вектор скорости	$ \upsilon = \sqrt{\upsilon_x^2 + \upsilon_y^2 + \upsilon_z^2},$	$\upsilon_x, \upsilon_y, \upsilon_z,$
Давление	$ \upsilon = \upsilon_n u \pi u \frac{\partial \upsilon_n}{\partial n} = 0, $	<i>p</i> ,
Закрутка скорости	$\upsilon = \upsilon_n, \upsilon_t = 0$	v_n, ω

Тип границы Свободный выход

Имя граничного	Граничное условие	Задаваемая
условия		величина
Нулевое давление	$p = 0, \ \upsilon = \upsilon_t$	нет
Давление	$\upsilon = \upsilon_t$	p
Свободная	$\frac{\partial p}{\partial p} = 0$	нет
граница	$\frac{\partial n}{\partial n} = 0$	

Тип границы Симметрия

Имя граничного	Граничное условие	Задаваемая
условия		величина
Стенка с про-	$v_t = 0$ $\frac{dv_t}{dv_t} = 0$	нет
скальзыванием	$o_n = 0, dn$	

Пример задания граничных условий

для задачи обтекания цилиндра

Входная граница А – тип границы Вход/Выход, граничное условие для скорости – Нормальный вход/выход, нормальная величина скорости положена равной 1 м/с.

Редактировать	граничное	условие	×
Модель : Ламин	арная жидко	сть	
Тип границы :	Вход/Вых	юд	
Скорссть			
Тип граничного	условия :	Нормальная ско	рость
Скорэсть	1		123 -
	ОК	Cancel	Help

Выходная граница С – тип границы Свободный выход, граничное условие для скорости – Нулевое давление/выход.

Редактировать г	раничное	услов	ие		×
Модель : Ламина	рная жидко	сть			
Тип границы :	Свободнь	ый вых	од		-
Скорссть					
Тип граничного у	јсловия :	Нуле	вое давле	ние/выхо,	-
[OK		Cancel	He	elp

Верхняя и нижняя границы B₁ и B₂ – тип границ **Симметрия**, граничное условие для скорости – **Стенка с проскальзыванием**.

Редактировать граничное условие 🛛 🛛 🗙
Модель : Ламинарная жидкость
Тип границы : Симметрия 🔽
Скорссть
Тип граничного условия : Стенка с проскальзыван 💌
OK Cancel Help

Поверхность цилиндра D – тип границы Стенка, граничное условие для скорости – Стенка.

Редактировать гр	раничное	условие	×
Модель : Ламинар	ная жидко	сть	
Тип границы :	Стенка		-
Скорссть			
Тип граничного ус	ловия :	Стенка	▼
	OK	Cancel	Help

Шаг 4. Генерация расчетной сетки

FlowVision использует прямоугольную адаптивную локально измельченную сетку для решения уравнений математической модели.

Сетка уровня 0 задается через диалоговое окно Свойства, вызываемое с помощью нажатия на правую клавишу мыши на пункт Начальная сетка в дереве варианта.

В этом окне имеется три закладки, в которых сетка задается вдоль направлений осей x, y, z.

Во вкладке «*X*-направление», следует задать число ячеек вдоль направления движения потока (50–200, в зависимости от постановки задачи, рекомендуется согласовать с преподавателем), после чего нажать на кнопку «**Равном.**» («равномерная сетка»).

То же самое следует проделать с сеткой в поперечном направлении, перейдя во вкладку «**У-направление**» и «**Z-направление**» в том же окне.

В случаях, когда требуется сгустить сетку, в некоторых частях расчетной области следует произвести визуализацию расчетной сетки, для чего необходимо нажать соответствующую кнопку в окне свойств сетки

Для добавления дополнительных линий сетки следует выделить в окне свойств соседнюю с добавляемой линию. После этого следует нажать кнопку «Вставить».

При этом добавленная линия выделяется красным цветом.

Для повышения точности расчета можно провести измельчение сетки вблизи поверхности. Для этого в окне свойств граничного условия задается уровень адаптации.

B диалоговом окне Свойства граничного задается условия уровень, до которого ячейки, BCC включающие в себя поверхность с данным граничным условием, будут измельчены.

Свойства [Wall]	×
-🛏 🗸 🗙 🍋 🥖	
Гр.Условие	
Имя: Стенка	
🔽 Адаптировать до :	2
Модель : Ламинарная	жидкость
Число осылок :	1440
Площадь фасеток :	3.14158317194898

Шаг 5. Задание параметров метода численного моделирования

Рабочая область Препроц Постпроц Эадачи суlinder_lam_Re=26_empty.FVT Суlinder_lam_Re=26_empty.FVT Подобласть#1 Физические параметры У=2 Движение Адаптация	×	Свойства [Параметры Метода] 🛛 - Параметры Метода] - Параметры Метода] Скорость Давление Пист нач приближение
Геометрия Фильтры ПП Связать гр.условия Начальная сетка Х=0 Общие параметры		Метод: 2-й порядок точности Итерации: 1-й порядок точности Вывод: 2-й порядок точности Вывод: 2-й порядок точности Ступенчатая функция Ступенчатая функция 01 Свой шано врам. Ступенчатая функция 01 Стоп при: 0 Стоп при: 0 Шаг: 0.422689

B Flow Vision имеются методы численного моделирования:

- 1-й порядок точности (грубое решение, максимальная скорость сходимости),
- 2-й порядок точности,
- ступенчатая функция (для расчета переноса ступенчатой функции, принимающей только два значения f_{\min} и f_{\max} во всей области расчета).

По умолчанию установлен метод **2-й порядок точности**.

Шаг 6. Проведения расчета

Расчет задачи выполняется нажатием

кнопки

(в первый раз)

В процессе расчетов следует обращать внимание на нижнюю часть окна Flow Vision, где отображаются текущее время, шаг по времени и (в столбце «Погрешность») максимальные погрешности в вычислении давлений и скоростей. В корректном расчете эти погрешности не должны превышать 0.01 (1%).

Расчет прекращается нажатием кнопки

Шаг 7. Просмотр результатов моделирования

- В Постпроцессоре имеются следующие папки:
- Виды это виды геометрических объектов в графическом окне.
- Объекты находятся все геометрические объекты, на которых (или в которых) будут отображаться расчетные параметры.
- Переменные в ней собраны все расчетные (зависимые и независимые) переменные, имеющиеся во всех расчетных областях данной задачи.
- Слои это список графических объектов, называемых слоями, отображенных в графическом окне.

Виды геометрических объектов

Визуализация переменной

Чтобы начать работу с постпроцессором, желательно, чтобы перед этим все переменные получили свои характерные значения, не противоречащие физическому смыслу задачи; для этого следует провести предварительный тестовый расчет (3–10 шагов по времени).

Если этого не сделать, многие максимальные и минимальные значения параметров в постпроцессоре (например, на осях графиков) придется вводить вручную.

- Чтобы визуализировать переменную, необходимо задать соответствующий слой.
- Слой задается из трех составляющих
- геометрический объект (шаблон линии, шаблон плоскости, шаблон прямоугольного параллелепипеда, шаблон конуса),
- имя переменной (скорость, давление и др.)
- метод ее отображения (двумерный график, график вдоль кривой, график по окружности, характеристики, вектора, изолинии, заливка, изоповерхность).

Через меню **Вид — Создать слой...** вызывается окно задания слоя.

	Новый слой 🗵
	✓ X №
	Имя Вектора из Скорость Авто
	Объект Переменная Метод Шаблон пло 💌 Скорость 💌 Вектора 💌
	Вектора Начальные точки Раскраска
	🔲 С нач. точк. 🔲 Пост длина 🔲 2D вектора
	Масштаб 📔 💌 Авто масштаб 📃
	Толщина линий Мин 1 <u>————</u> Макс
	Нет <u>Макс</u> Макс
б)	

NUM

отобразится в графическом окне.

Обновление графической информации в окне происходит на каждом шаге по времени, поэтому пользователь имеет возможность постоянного контроля над процессом сходимости решения и, если нужно, может вмешаться в процесс расчета при возникновении численных неустойчивостей или несходимости решения.

Шаг 8. Окончание расчета.

Окончание расчета может проводится:

- 1. автоматически:
- по заданному конечному времени процесса;
- 2. вручную пользователем
- пользователь может сам визуализировать в окне постпроцессора интересующую его величину и следить за ее изменением.

Последний способ является предпочтительным, т.к. он является наиболее наглядным и надежным.