ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ

Сухоцкий Альберт Борисович

Ввод параметров численного расчета

Окно свойств Общие параметры содержит следующие закладки:

- Старт определение параметров начала вычисления,
- Гравитация задание вектора гравитации
- Время задание времени вычисления и частоты автосохранения,
- Шаги задание вычислительного метода и шага по времени.

Параметры метода расчета и выбора шага по времени (Шаги)

Свойства [Общие параметры] 🛛 🛛 🛛
-m 🗸 🗙 🍋
Старт Гравитация Время Шаги Наст 🔸 🕨
🗌 Скошенная схема
Явное число КФЛ 0.5
✓ Неявная схема
④ КФЛ 1 Макс. шаг 1
С Фикс. шаг 1

Выделите элемент дерева Общие параметры, нажмите правую кнопку мыши и выберите Свойства в контекстном меню.

В окошке Шаги присутствуют следующие схемы аппроксимации:

- Скошенная схема,
- Неявная схема,

Имеются следующие способы задания шагов интегрирования по времени:

- КФЛ шаг интегрирования по времени будет определяться исходя из числа Куранта (максимальное число ячеек сетки, которое малый объем жидкости может преодолеть за один шаг по времени).
- Макс. шаг максимальный шаг интегрирования по времени для неявного метода расчета.
- Фикс. шаг шаг интегрирования по времени при неявном методе расчета будет равен значению, указанному в окошке справа от этого элемента.

При выборе шага по времени следует исходить в первую очередь из того, какие математические модели используются в данной задаче:

Для модели Твердый материал шаг по времени может быть оценен, исходя из оценки времени прогрева неравномерно прогретого тела: *l*²/χ,

где χ – коэффициент

температуропроводности материала;

• Для моделей Ламинарная жидкость, Несжимаемая жидкость, Слабосжимаемая жидкость и Модель горения шаг по времени можно задать равным одной десятой пролетного времени (время, которое потребуется частице, выпущенной из входа в расчетную область, чтобы достигнуть выхода расчетной области)

 $0, 1 \cdot l/v.$

• Для моделей **Свободная поверхность** и **Многофазная модель** шаг по времени следует задавать исходя из Куранта равного 1.

• Для модели Полностью сжимаемая жидкость шаг по времени зависит от сходимости уравнений по давлению. Первоначальный шаг по времени следует задавать аналогично моделям Ламинарная жидкость, Несжимаемая жидкость и т.д.

Если при таком шаге сходимости по давлению нет (значения искомых величин в разных расчетных точках будут различаться на много порядков - это называется расходящимся решением), то шаг нужно уменьшать.

Специальные границы

Сопряженные границы

Сопряженная задача это задач теплообмена между твердым телом и жидкостью, когда важен одновременный расчет распределения температуры и в твердом теле и в жидкости.

Решение в двух различных областях, имеющих разные математические модели, сопрягается (сшивается) на общей границе этих двух областей.

В FlowVision два различных объема V_1 и V_2 , если они даже имеют общую геометрическую поверхность S, все же имеют разные границы, поскольку объем V_1 имеет в качестве границы обращенную к нему сторону этой поверхности B_1 , а другой объем V_2 – сторону B_2 .

Чтобы граничное условие Сопряженное ввести, его нужно поставить как на границе B₁, так и на границе B₂. Затем граничные условия связываются между собой в папке Связать гр. условия.

Lвойства [Lвязі	(a#U]	<u>×</u>
-¤ 🗸 🗙 🕅		
Связка Вручн	ую	
Имя: Связк	.a#0	
Подобласть	Статор	связана с
подобластью	Ротор	через
поверхности с	гр.условиями	
Сспряжение	Статор Сопряже	ние Ротор
Тип связи	Скользяшая пове	ВОХНОСТЬ
Площадь	0.0313891892	.0314069535

Периодические границы

Тип границы **Периодическое** включает в себя граничные условия:

для скалярных переменных –
Периодичное и Периодическое с перепадом;
для скоростей – Периодичное и
Периодическое с перепадом давления.

Граничное условие Периодическое с перепадом позволяет задать скачок Δf скалярной переменной на границах B_1 и B_2 :

$$f_{B_2} - f_{B_1} = \Delta f$$

Граничное условие **Периодическое с перепадом давления** позволяет задать скачок давления на соответствующих границах.

Пример использования граничных условий со скачками переменных для моделирования теплообменника из нагретых труб, поперечно обтекаемых охлаждаемой жидкостью.

На границах С₁ и С₂ ставятся периодические граничные условия **Периодичное** для всех переменных задачи.

На границах B₁ и B₂ ставятся граничное условие **Периодическое с перепадом** давления для скоростей и **Периодическое с перепадом** для температуры.

Фильтры

В каждой подобласти можно задать дополнительные объекты, которые будут както воздействовать либо на данные, либо на сетку в данной подобласти. Такие объекты называются фильтрами-модификаторами. Каждый фильтр состоит из двух частей: объекта внутри которого он действует и способа воздействия.

Для того, чтобы создать новый фильтр:

• Выделить папку **Фильтры**, нажать правую кнопку мыши и выбрать пункт **Создать** в контекстном меню.

- Появится окно создания фильтра.
- В окошке Объект следует выбрать тип объекта, в котором будет работать фильтр. В окошке Тип тип фильтра (способ воздействия).

Новый фильтр	<u>×</u>
√ X №	
Имя	Авто
Объект	Тип
Свойства	
Свойства	не доступны.

Типы фильтров:

- Изотропное сопротивление задает изотропную силу сопротивления.
- Анизотропное сопротивление с источником тепла — задает анизотропную силу сопротивления и источник тепловыделения.
- Начальное распределение частиц размещает модельные частицы с заданным шагом в указанном объёме.

Свойства фильтра анизотропной силы сопротивления и источника тепловыделения

На странице свойств Расположение задается положение геометрического объекта, на котором базируется этот фильтр:

Свс [а]	йства [Ан	изотропн К?	ioe compon	ивление (: n
F	асположен	ие Пара	метры пара	мелепипе),	• •
		X	Y	Z	
	Источник	0	0.02	0	
	Hanp 1	1	0	0	
	Hanp 2	0	1	0	_
	Hanp 3	Ū	0	1	-11
					- 11
	Цантр	ктрелбо	00	н области	

НастраницесвойствПараметрыпараллелепипедазадаютсяразмерыгеометрического объекта, на котором базируетсяэтот фильтр:

Свойства [Анизотропное сопротивление с и
$ -\omega \checkmark \times ^2$
Параматры паралалелипеда (Анизотропно 💶 🕨
Размер
Hanp 1 0.040008 Sanapr
Hanp 2 0 040006 <u>Sanap</u>
Hanp 3 0.060012 <u>Sanapr</u>
Сохранять пропорции

На странице свойств Анизотропное сопротивление задается время действия фильтра:

Свойства [Анизотропное сопротивление с и
-∞ ✓ 🗙 🌾
Анизотралное сопративление — ВВЕ — Пр. 4 🕨
Постоянный
grad P = ~ D " Visc " Y ~ E " Dens " V " Y / 2
$Q = Q0 + b^{\times} M ^{n} n$

• Постоянный — фильтр действует

постоянно;

- Одноразовый фильтр одноразового действия. После воздействия фильтр автоматически
- •переходит в состояние Неактивный;
- Неактивный бездействующий.

На странице свойств **D&E** задаются диагональные матрицы 3х3 из уравнения силы сопротивления в уравнениях Навье-Стокса

Свойства [Анизотропное сопротивление с и					
-m 🗸 🗙 🎼					
Анизотропное сопротивление D&E (ıpı∎ ►				
D11 = 0	123 -				
D22- 0	123				
D33- D	f.				
E11 = 0					
E22= 0	123 -				
E33= D	123 -				

На странице свойств Источник тепла задается источник тепловыделения:

Дополнительные инструменты для работы с геометрией

Пункт меню **Инструменты** содержит некоторые дополнительные инструменты для работы с геометрией:

- преобразование загруженной геометрии (масштабирование, сдвиг и вращение),
- переразбиение загруженной геометрии на группы.

Преобразование геометрии

Для того, чтобы преобразование геометрии:

Выберете в меню
Инструменты пункт
Изменить геометрию

Треобразов	ание геомет	рии.		×
Вставить	Трансформа	ция	Удалит	ь
				Вверх Сдвиг Вниз
Свойства				
	Свойства не	дост	упны.	
OK	Cancel	Ŀ	Apply	Help

осуществить

При нажатии на кнопку Вставить появится возможность выбора вида преобразования: Масштаб, Двигать, Вращать.

Преобразов	ание геометрии.		×
Вставить	Трансформация	Удалить	
			Вверх Сдвиг Вниз
Свойства	Масштаб Двигать Вращать		
OK	Cancel	Apply	Help

В окне свойств Масштаб предлагается выбрать коэффициент масштабирования загруженной геометрии по каждой из осей.

Π	реобразо	вание геон	иетрии.		×
	Вставить	Трансфор	мация	Удалить	
	Масштаб				Вверх
					Сдвиг
	J				ВНИЗ
	Масштаб				
	Хось 🛛	100	%		
	Ү ось 🛛	100	%		
	Z ось [100	%		
	OK	Cance		Abbla	Help

В окне свойств Двигать предлагаетя выбрать перемещение загруженной геометрии по каждой из осей. Таким образом изменяется положение центра системы координат.

Преобразов	ание геометрии.		×
Вставить	Трансформация	Удалить	
Двигать Сдвинуть Хось Уось Сось			Вверх Сдвиг Вниз
OK	Cancel	Apply	Help

В окне свойств **Вращать** предлагается выбрать координаты вектора, вокруг которого осуществляется поворот загруженной геометрии, и

угол поворота.

Преобразо	вание геометрии.	×
Вставить	Трансформация Удалить	
Врацать	Be C. Bi	зерх двиг низ
Вращение	•	
	———— Вокруг вектора————————————————————————————————————	
Хкоорд	Начало Конец	
Укоорд	, Ο Ο	
Zкоорд		
y	гол вращения 0	
OK	Cancel <u>Apply</u> H	elp