Please use this identifier to cite or link to this item: https://elib.belstu.by/handle/123456789/36931
Title: Triangular lattice models for pattern formation by core–shell particles with different shell thicknesses
Authors: Grishina, V. S.
Vikhrenko, V. S.
Ciach, A.
Keywords: твердые частицы
частицы ядро-оболочка
модели треугольной решетки
треугольная решетка
hard-core soft-shell particles
ordered structures
line tension
heat capacity
chemical potential-concentration isotherms
поверхностное натяжение
термодинамика частиц
теплоемкость
толстые оболочки
тонкие оболочки
границы раздела фаз
линейное натяжение
Issue Date: 2020
Citation: Grishina, V. S. Triangular lattice models for pattern formation by core–shell particles with different shell thicknesses / V. S. Grishina, V. S. Vikhrenko, A. Ciach // Journal of Physics: Condensed Matter. - Vol. 32, N. 40. - № 405102
Description: Triangular lattice models for pattern formation by hard-core soft-shell particles at interfaces are introduced and studied in order to determine the effect of the shell thickness and structure. In model I, we consider particles with hard-cores covered by shells of cross-linked polymeric chains. In model II, such inner shell is covered by a much softer outer shell. In both models, the hard cores can occupy sites of the triangular lattice, and nearest-neighbor repulsion following from overlapping shells is assumed. The capillary force is represented by the second or the fifth neighbor attraction in model I or II, respectively. Ground states with fixed chemical potential μ or with fixed fraction of occupied sites c are thoroughly studied. For T > 0, the μ(c) isotherms, compressibility and specific heat are calculated by Monte Carlo simulations. In model II, 6 ordered periodic patterns occur in addition to 4 phases found in model I. These additional phases, however, are stable only at the phase coexistence lines at the (μ, T) diagram, which otherwise looks like the diagram of model I. In the canonical ensemble, these 6 phases and interfaces between them appear in model II for large intervals of c and the number of possible patterns is much larger than in model I. We calculated line tensions for different interfaces, and found that the favorable orientation of the interface corresponds to its smoothest shape in both models.
URI: https://elib.belstu.by/handle/123456789/36931
Appears in Collections:Публикации в зарубежных изданиях




Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.